Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (18): 431812.doi: 10.7527/S1000-6893.2025.31812
• Material Engineering and Mechanical Manufacturing • Previous Articles
Shuang MENG1, Lianyu ZHENG1,2,3, Xiangrong ZHANG1, Zhibo ZHANG1, Yiwei WANG1,2,3(
)
Received:2025-01-15
Revised:2025-02-10
Accepted:2025-03-11
Online:2025-09-25
Published:2025-05-13
Contact:
Yiwei WANG
E-mail:wangyiwei@buaa.edu.cn
Supported by:CLC Number:
Shuang MENG, Lianyu ZHENG, Xiangrong ZHANG, Zhibo ZHANG, Yiwei WANG. Corrective adjustment for reconfigurable assembly fixtures based on geometric constraints[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 431812.
Table 2
Characteristics and application scenarios of point adjustment calculation methods
| 计算方法 | 优势 | 不足 | 应用场景 | |
|---|---|---|---|---|
| 点位绝对装调 | 计算简单 | 点位调整数量多,幅度大,要求定位器具有较高柔性 | 适用于新制造或使用时间较短的型架装调 | |
| 点位相对装调 | 最小位移法 | 调整幅度小,对定位器的柔性要求较低,易于工程实现 | 点位调整数量多,调整耗时长 | 适用于结构复杂、刚性稍差、易发生柔性变形的型架装调 |
| 最少数量法 | 关键点调整数量较少,减少调整工作量,误差引入减少 | 某些点位调整幅度可能较大,对定位器的柔性要求较高 | 适用于结构复杂、刚性较好、易发生整体刚性位移的型架装调 | |
Table 4
Excerpts of measured data of OTP points (Measurement time: December 12, 2023)
OTP 序号 | 理论数据/mm | 实测数据/mm | Delta/mm | 长度/mm | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| x1 | y1 | z1 | x2 | y2 | z2 | Δx | Δy | Δz | D | |
| 1 | 434.000 0 | 4 842.300 0 | 250.000 0 | 433.984 2 | 4 842.246 0 | 249.945 3 | -0.015 8 | -0.054 0 | -0.054 7 | 0.078 5 |
| 2 | 784.000 0 | 4 842.300 0 | 1 350.000 0 | 784.049 7 | 4 842.176 0 | 1 350.073 | 0.049 7 | -0.124 5 | 0.073 1 | 0.152 7 |
| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 6 | 384.000 0 | 4 322.300 0 | 2 600.000 0 | 384.059 7 | 4 322.249 0 | 2 600.136 0 | 0.059 7 | -0.051 5 | 0.136 0 | 0.157 2 |
| 7 | 434.000 0 | 3 272.300 0 | 250.000 0 | 433.912 3 | 3 272.300 0 | 249.928 0 | -0.087 7 | -0.000 3 | -0.072 0 | 0.113 5 |
| 8 | 784.000 0 | 3 272.300 0 | 1 350.000 0 | 784.089 2 | 3 272.221 0 | 1 349.962 0 | 0.089 2 | -0.079 2 | -0.038 0 | 0.125 2 |
| 9 | 384.000 0 | 3 272.300 0 | 2 600.000 0 | 384.068 0 | 3 272.299 0 | 2 600.092 0 | 0.068 0 | -0.000 9 | 0.092 1 | 0.114 5 |
| 10 | 434.000 0 | 2 512.300 0 | 250.000 0 | 433.979 3 | 2 512.341 0 | 249.937 5 | -0.020 7 | 0.041 2 | -0.062 5 | 0.077 7 |
| 11 | 784.000 0 | 2 512.300 0 | 1 350.000 0 | 783.969 3 | 2 512.183 0 | 1 349.907 0 | -0.030 7 | -0.117 5 | -0.092 6 | 0.152 7 |
| 12 | 384.000 0 | 2 512.300 0 | 2 600.000 0 | 383.904 9 | 2 512.354 0 | 2 600.060 0 | -0.095 1 | 0.054 4 | 0.060 3 | 0.125 0 |
| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 23 | 784.000 0 | 2 987.300 0 | 1 350.000 0 | 783.942 6 | 2 987.243 0 | 1 349.905 0 | -0.057 4 | -0.057 3 | -0.095 1 | 0.125 0 |
| 24 | 384.000 0 | 2 987.300 0 | 2 600.000 0 | 384.062 8 | 2 987.260 0 | 2 600.080 0 | 0.062 8 | -0.040 3 | 0.079 7 | 0.109 2 |
Table 6
Excerpts of MEASURED DAta of OTP points (Measurement time: November 18, 2024)
OTP 序号 | 理论数据/mm | 实测数据/mm | Delta/mm | 长度/mm | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| x1 | y1 | z1 | x2 | y2 | z2 | Δx | Δy | Δz | D | |
| 1 | 434.000 0 | 4 842.300 0 | 250.000 0 | 435.157 0 | 4 842.202 8 | 249.973 6 | 1.157 0 | -0.097 2 | 0.343 1 | 1.210 7 |
| 2 | 784.000 0 | 4 842.300 0 | 1 350.000 0 | 784.473 9 | 4 842.363 0 | 1 350.548 1 | 0.473 9 | 0.063 0 | 0.633 3 | 0.793 5 |
| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 23 | 784.000 0 | 2 987.300 0 | 1 350.000 0 | 784.370 5 | 2 987.085 8 | 1 350.634 5 | 0.070 5 | -0.214 2 | 0.579 5 | 0.621 8 |
| 24 | 384.000 0 | 2 987.300 0 | 2 600.000 0 | 383.800 9 | 2 987.213 6 | 2 601.055 9 | -0.199 1 | -0.086 4 | 0.419 2 | 0.472 1 |
Table 8
Excerpts of position adjustment data for OTP Points
OTP 序号 | 实测坐标/mm | 目标位置坐标/mm | |||||||
|---|---|---|---|---|---|---|---|---|---|
| x1 | y1 | z1 | x2 | y2 | z2 | Δx | Δy | Δz | |
| 1 | 435.157 0 | 4 842.202 8 | 249.973 6 | 434.854 8 | 4 841.763 0 | 250.045 7 | 0.302 2 | 0.439 8 | -0.072 1 |
| 2 | 784.473 9 | 4 842.363 0 | 1 350.548 1 | 784.495 1 | 4 841.971 2 | 1 350.160 1 | -0.021 2 | 0.391 8 | 0.388 0 |
| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 6 | 384.059 7 | 4 322.248 5 | 2 600.136 0 | 384.059 7 | 4 322.248 5 | 2 600.136 0 | 0.000 0 | 0.000 0 | 0.000 0 |
| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 15 | 383.929 4 | 1 769.157 0 | 2 600.660 6 | 383.929 4 | 1 769.157 0 | 2 600.660 6 | 0.000 0 | 0.000 0 | 0.000 0 |
| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 18 | 383.856 0 | 1 452.178 0 | 2 600.597 9 | 383.856 0 | 1 452.178 0 | 2 600.597 9 | 0.000 0 | 0.000 0 | 0.000 0 |
| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 23 | 784.370 5 | 2 987.085 8 | 1 350.634 5 | 784.370 5 | 2 987.085 8 | 1 350.634 5 | 0.000 0 | 0.000 0 | 0.000 0 |
| 24 | 383.800 9 | 2 987.213 6 | 2 601.055 9 | 383.991 6 | 2 987.248 5 | 2 600.410 3 | -0.190 7 | -0.034 9 | 0.645 6 |
Table 10
Statistical value results of OTP points deviations
| AT对象 | 测量项 | 最小值/mm | 最大值/mm | ||||
|---|---|---|---|---|---|---|---|
| OTP1 | Δx | -0.070 0 | -0.066 8 | 4.51 | 0.069 0 | 0.066 8 | 3.22 |
| Δy | -0.187 1 | -0.192 1 | 2.65 | 0.186 4 | 0.192 1 | 3.03 | |
| Δz | -0.061 9 | -0.065 3 | 5.38 | 0.061 6 | 0.065 3 | 5.88 | |
| OTP2 | Δx | -0.069 7 | -0.066 8 | 4.19 | 0.067 9 | 0.066 8 | 1.57 |
| Δy | -0.301 1 | -0.307 3 | 2.05 | 0.300 3 | 0.307 3 | 2.35 | |
| Δz | -0.067 7 | -0.065 3 | 3.63 | 0.066 6 | 0.065 3 | 2.04 | |
| OTP3 | Δx | -0.069 5 | -0.066 8 | 3.86 | 0.068 1 | 0.066 8 | 1.93 |
| Δy | -0.199 0 | -0.208 3 | 4.71 | 0.198 2 | 0.208 3 | 5.12 | |
| Δz | -0.062 4 | -0.065 3 | 4.59 | 0.062 1 | 0.065 3 | 5.03 | |
Table 11
Coordinate deviations of OTP Points
| AT对象 | 测量项 | 区间成员判断 | ||||
|---|---|---|---|---|---|---|
| 最小值 | 最大值 | |||||
| OTP1 | Δx | -0.058 1 | 0.058 1 | -0.190 0 | 0.006 1 | 属于 |
| Δy | -0.139 8 | 0.141 2 | 0.107 8 | -0.051 5 | 属于 | |
| Δz | -0.056 1 | 0.056 5 | 0.502 7 | -0.150 4 | 不属于 | |
| OTP2 | Δx | -0.058 5 | 0.058 7 | -0.112 2 | 0.115 0 | 不属于 |
| Δy | -0.188 1 | 0.188 9 | 0.207 6 | -0.328 7 | 不属于 | |
| Δz | -0.056 6 | 0.056 4 | 0.018 3 | 0.580 3 | 不属于 | |
| OTP3 | Δx | -0.058 5 | 0.058 3 | -0.167 9 | 0.774 7 | 不属于 |
| Δy | -0.143 0 | 0.142 4 | 0.386 2 | -0.536 9 | 不属于 | |
| Δz | -0.056 4 | 0.056 7 | -0.421 7 | 0.820 3 | 不属于 | |
| [1] | 张宏博, 郑联语, 王艺玮. 基于模块服役状态的盒式连接可重构型架稳定性评估方法[J]. 航空学报, 2021, 42(9): 424180. |
| ZHANG H B, ZHENG L Y, WANG Y W. Stability evaluation method for box-joint reconfigurable jig based on module service state[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 424180 (in Chinese). | |
| [2] | 何胜强. 大型飞机数字化装配技术与装备[M]. 北京: 航空工业出版社, 2013: 17-34. |
| HE S Q. Digital assembly technology and equipment for large aircraft[M]. Beijing: Aviation Industry Press, 2013: 17-34 (in Chinese). | |
| [3] | 刘振宇, 喻明让, 陈云, 等. 基于分层误差补偿的飞机柔性工装定位精度提高方法[J]. 机械设计与制造工程, 2023, 52(8): 77-81. |
| LIU Z Y, YU M R, CHEN Y, et al. A method for improving the positioning accuracy of aircraft flexible tooling based on layering error compensation[J]. Machine Design and Manufacturing Engineering, 2023, 52(8): 77-81 (in Chinese). | |
| [4] | 巴晓甫, 薛红前, 李西宁. 随位串联三坐标定位器定位精度建模与试验[J]. 航空学报, 2023, 44(19): 428469. |
| BA X F, XUE H Q, LI X N. Modeling and test of positioning accuracy for positioner with 3-axis randomly position connected in series[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 428469 (in Chinese). | |
| [5] | 曹多明, 成英燕, 常春涛, 等. BDS不同卫星选择对相对定位精度的影响研究[J]. 测绘科学, 2022, 47(1): 15-23. |
| CAO D M, CHENG Y Y, CHANG C T, et al. Research on the influence of different BDS satellite selection on relative positioning accuracy[J]. Science of Surveying and Mapping, 2022, 47(1): 15-23 (in Chinese). | |
| [6] | 王军, 张华海. 卫星几何分布对GPS相对定位精度的影响[J]. 测绘科学, 2004, 29(2): 53-54. |
| WANG J, ZHANG H H. Effects of satellite geometric distributions on GPS relative positioning[J]. Science of Surveying and Mapping, 2004, 29(2): 53-54 (in Chinese). | |
| [7] | 梁青霄. 飞机装配工艺设计[M]. 西安: 西北工业大学出版社, 2022: 99-102. |
| LIANG Q X. Aircraft assembly process design[M]. Xi’an: Northwestern Polytechnical University Press, 2022: 99-102 (in Chinese). | |
| [8] | 吕川. 维修性设计分析与验证[M]. 北京: 国防工业出版社, 2012: 1-10. |
| LU C. Design, analysis and verification of maintainability[M]. Beijing: National Defense Industry Press, 2012: 1-10 (in Chinese). | |
| [9] | 郭飞燕, 刘检华, 肖庆东, 等. 数字化装配工装工作状态监测评估及适应性控制技术[J]. 航空学报, 2023, 44(16): 427914. |
| GUO F Y, LIU J H, XIAO Q D, et al. Monitoring and evaluation of working condition and adaptive control technology for digital assembly tooling[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 427914 (in Chinese). | |
| [10] | 王巍, 陈泽宇. 基于激光跟踪仪的工装调装检测技术研究[J]. 机械工程师, 2020(3): 7-9, 13. |
| WANG W, CHEN Z Y. Research on tooling adjustment and detection technology based on laser tracker[J]. Mechanical Engineer, 2020(3): 7-9, 13 (in Chinese). | |
| [11] | MARTIN O C, MUELANER J E, WANG Z, et al. Metrology enhanced tooling for aerospace (META): A live fixturing, wing box assembly case study[C]∥7th International Conference on Digital Enterprise Technology. 2011. |
| [12] | LIANG B, LIU W, LIU K, et al. A displacement field perception method for component digital twin in aircraft assembly[J]. Sensors, 2020, 20(18): 5161. |
| [13] | JIA Z, LIANG B, LIU W, et al. 3D microdisplacement monitoring of large aircraft assembly with automated in situ calibration[J]. Engineering, 2022, 19: 105-116. |
| [14] | 刘巍, 陈启航, 梁冰, 等. 基于多源参量感知的航空工装定位器在线监测方法与系统研究[J]. 机械工程学报, 2023, 59(12): 162-172. |
| LIU W, CHEN Q H, LIANG B, et al. Research on online monitoring method and system of aircraft tooling positioner based on multi-source parametric perception[J]. Journal of Mechanical Engineering, 2023, 59(12): 162-172 (in Chinese). | |
| [15] | 李现坤, 雷沛, 曾德标, 等. 基于集成光纤传感器的工装状态监控技术研究[J]. 机床与液压, 2022, 50(20): 59-63. |
| LI X K, LEI P, ZENG D B, et al. Research on tooling status monitoring technology based on integrated optical fiber sensor[J]. Machine Tool & Hydraulics, 2022, 50(20): 59-63 (in Chinese). | |
| [16] | JIN J, HU J, LI C, et al. A digital twin system of reconfigurable tooling for monitoring and evaluating in aerospace assembly[J]. Journal of Manufacturing Systems, 2023, 68: 56-71. |
| [17] | 耿育科. 基于多场扰动的飞机装配工装目标精度机理探索[J]. 航空制造技术, 2022, 65(18): 14-22. |
| GENG Y K. Mechanism research on target accuracy of aircraft assembly tooling based on multi-factor disturbance[J]. Aeronautical Manufacturing Technology, 2022, 65(18): 14-22 (in Chinese). | |
| [18] | 余海东, 高畅, 赵勇, 等. 机械产品装配偏差分析方法研究进展与展望[J]. 机械工程学报, 2023, 59(9): 212-229. |
| YU H D, GAO C, ZHAO Y, et al. Progress and prospect on assembly deviation propagation of mechanical products[J]. Journal of Mechanical Engineering, 2023, 59(9): 212-229 (in Chinese). | |
| [19] | HAN W, DENG Q, LIN W, et al. Variation propagation modeling and analysis of automotive body outer cover panels assembly systems[J]. Assembly Automation, 2019, 39(2): 272-286. |
| [20] | LU Z Y. Assembly variation analysis of the aircraft panel in multi-stage assembly process with N-2-1 locating scheme[J]. Proceedings of the Institution of Mechanical Engineers, Part C. Journal of Mechanical Engineering Science, 2019, 233(19-20): 6754-6773. |
| [21] | LIU S C, HU S J. Variation simulation for deformable sheet metal assemblies using finite element methods[J]. Journal of Manufacturing Science & Engineering, 1997, 119(3): 368-374. |
| [22] | JANDAGHI SHAHI V, MASOUMI A. Integration of in-plane and out-of-plane dimensional variation in multi-station assembly process for automotive body assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(6): 1690-1702. |
| [23] | 黄康, 徐锐, 陈奇. 小位移旋量和响应面法相结合的齿轮公差分析模型构建方法[J]. 西安交通大学学报, 2017, 51(9): 77-84. |
| HUANG K, XU R, CHEN Q. Gear tolerance modeling with small displacement torsor and response surface method[J]. Journal of Xi’an Jiaotong University, 2017, 51(9): 77-84 (in Chinese). | |
| [24] | CHEN H, JIN S, LI Z, et al. A solution of partial parallel connections for the unified Jacobian-Torsor model[J]. Mechanism and Machine Theory, 2015, 91: 39-49. |
| [25] | PENG Y, HAO L, HUANG X, et al. A pre-assembly analysis technology of aircraft components based on measured data[J]. Measurement Science and Technology, 2022, 33(7): 75005. |
| [26] | 陈帅, 郭飞燕, 孟月梅, 等. 融合实测数据的航空结构件修配量迭代寻优及评价方法[J]. 中国机械工程, 2022, 33(17): 2061-2070, 2078. |
| CHEN S, GUO F Y, MENG Y M, et al. Iterative optimization and evaluation method for repair quantity of aviation structural parts considering measured data[J]. China Mechanical Engineering, 2022, 33(17): 2061-2070, 2078 (in Chinese). | |
| [27] | 王鑫, 李兆宇, 王亮, 等. 基于3DCS的某型号导弹舱段装配容差分析[J]. 航天制造技术, 2020(4): 48-52, 70. |
| WANG X, LI Z Y, WANG L, et al. Tolerance analysis of missile cabin assembly based on 3DCS[J]. Aerospace Manufacturing Technology, 2020(4): 48-52, 70 (in Chinese). | |
| [28] | MENG S, ZHENG L Y, FAN W, et al. Intelligent layout optimization of reconfigurable flexible fixture for assembling multiple aircraft panels[J]. The International Journal of Advanced Manufacturing Technology, 2023, 126(3-4): 1261-1278. |
| [29] | 康永刚. 飞机装配工艺装备[M]. 西安: 西北工业大学出版社, 2024: 128-131. |
| KANG Y G. Aircraft assembly fixture[M]. Xi’an: Northwestern Polytechnical University Press, 2024: 128-131 (in Chinese). | |
| [30] | 赵西富, 崔海华, 张益华, 等. 面向投影增强现实跟踪定位器的稳定位姿估计与标定方法[J]. 航空学报, 2025, 46(8): 331072. |
| ZHAO X F, CUI H H, ZHANG Y H, et al. Stable pose estimation and calibration method for projected augmented reality tracking locator[J]. Acta Aeronautica et Astronautica Sinica, 2025 (in Chinese). | |
| [31] | 薛颂东, 李永豪, 赵红燕. 基于多粒度阅读器和图注意力网络的文档级事件抽取[J]. 计算机应用研究, 2024, 41(8): 2329-2335. |
| XUE S D, LI Y H, ZHAO H Y. Document level event extraction based on multi granularity readers and graph attention networks[J]. Application Research of Computers, 2024, 41(8): 2329-2335 (in Chinese). | |
| [32] | 孙威, 缪东晶, 李建双, 等. 多边法坐标测量系统中解算方式对测量精度的影响研究[J]. 计量学报, 2021, 42(5): 558-563. |
| SUN W, MOU D J, LI J S, et al. Study on the influence of the calculation method on the accuracy of the multilateral coordinate measurement system[J]. Acta Metrologica Sinica, 2021, 42(5): 558-563 (in Chinese). | |
| [33] | GHIE W, LAPERRIÈRE L, DESROCHERS A. Statistical tolerance analysis using the unified Jacobian-Torsor model[J]. International Journal of Production Research, 2009, 48(15): 4609-4630. |
| [34] | MENG S, FAN W, WANG X, et al. Intelligent design of reconfigurable flexible assembly fixture for aircraft panels based on smart composite jig model and knowledge graph[J]. Journal of Engineering Design, 2024, 36(5-6): 672-706. |
| [35] | 邢一新. 飞机装配几何量质量检测体系构建及关键技术[J]. 航空制造技术, 2021, 64(6): 24-31. |
| XING Y X. Research on establishment and key techniques of aircraft assembling geometric measurement system[J]. Aeronautical Manufacturing Technology, 2021, 64(6): 24-31 (in Chinese). | |
| [36] | 张宏博, 郑联语, 刘新玉, 等. 基于信息物理系统的可重构装配型架智能装调技术[J]. 计算机集成制造系统, 2019, 25(11): 2693-2709. |
| ZHANG H B, ZHENG L Y, LIU X Y, et al. Cyber-physical system based smart installing technology for reconfigurable assembly jig[J]. Computer Integrated Manufacturing Systems, 2019, 25(11): 2693-2709 (in Chinese). | |
| [37] | ZHANG X R, MENG S, WANG B B, et al. Integrated assembly, measurement, and adjustment method of reconfigurable flexible fixture for aircraft panels based on augmented reality and human-computer interaction[J]. Journal of Manufacturing Systems, 2025, 79: 117-133. |
| [1] | Wenqian PEI, Kaikai YU, Zengxu LIU, Qiyue NING, Jinglei XU. Two-stage expansion nozzle design method and numerical simulation [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631009-631009. |
| [2] | CHEN Yile, YU Kaikai, XU Jinglei. New design method for scramjet nozzles with strong geometric constraints [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 124259-124259. |
| [3] | SHI Lei, YANG Guang, DING Guanghua, LIN Wenjun. Fine maintenance of an eroded fan rotor and related flow characteristics analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 423446-423446. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

