Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (14): 131451.doi: 10.7527/S1000-6893.2025.31451
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Junjie FU1,2, Feng QU1,2(
), Di SUN1,2
Received:2024-10-28
Revised:2024-11-19
Accepted:2025-02-19
Online:2025-02-26
Published:2025-02-25
Contact:
Feng QU
E-mail:qufeng@nwpu.edu.cn
Supported by:CLC Number:
Junjie FU, Feng QU, Di SUN. Integrated design of waverider forebody and inward-turning inlet considering viscous effect under given flowfield distribution[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(14): 131451.
Table 19
Comparison of viscous results at non-design point Ma∞=5
| 构型 | CL | CD | L/D | φ | ||||
|---|---|---|---|---|---|---|---|---|
| Geo_Base1_Inviscid | 0.087 52 | 0.041 18 | 2.124 9 | 0.813 4 | 0.769 8 | 28.831 7 | 0.655 8 | 32.628 7 |
| Geo_Base2_Inviscid | 0.088 64 | 0.044 46 | 1.993 7 | 0.801 6 | 0.740 3 | 33.419 1 | 0.618 4 | 39.501 6 |
| Geo_Base1_Correction | 0.082 59 | 0.038 80 | 2.128 4 | 0.848 9 | 0.785 7 | 23.958 9 | 0.666 9 | 26.243 0 |
| [1] | SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. |
| [2] | 谢赞, 周灿灿, 赵振涛, 等. 宽速域飞行器发展及研究现状综述[J]. 空天技术, 2022(4): 28-39, 86. |
| XIE Z, ZHOU C C, ZHAO Z T, et al. Overview of development and research status of wide speed range aircraft[J]. Aerospace Technology, 2022(4): 28-39, 86 (in Chinese). | |
| [3] | 罗金玲, 李超, 徐锦. 高超声速飞行器机体/推进一体化设计的启示[J]. 航空学报, 2015, 36(1): 39-48. |
| LUO J L, LI C, XU J. Inspiration of hypersonic vehicle with airframe/propulsion integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 39-48 (in Chinese). | |
| [4] | 许耀宇, 黄河峡, 谭慧俊, 等. 高超声速飞行器前体/进气道一体化气动设计回顾与展望[J]. 空天技术, 2024(2): 15-38. |
| XU Y Y, HUANG H X, TAN H J, et al. Retrospect and prospect on the aerodynamic integration of hypersonic aircraft forebody/inlet[J]. Aerospace Technology, 2024(2): 15-38 (in Chinese). | |
| [5] | 丁峰, 柳军, 沈赤兵, 等. 乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述[J]. 实验流体力学, 2018, 32(6): 16-26. |
| DING F, LIU J, SHEN C B, et al. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26 (in Chinese). | |
| [6] | MA Y, GUO M M, TIAN Y, et al. Recent advances and prospects in hypersonic inlet design and intelligent optimization[J]. Aerospace Science and Technology, 2024, 146: 108953. |
| [7] | WALKER S, SHERK J, SHELL D, et al. The DARPA/AF falcon program: the hypersonic technology vehicle #2 (HTV-2) flight demonstration phase: AIAA-2008-2539[R]. Reston: AIAA, 2008. |
| [8] | 李宪开, 王霄, 柳军, 等. 水平起降高超声速飞机气动布局技术研究[J]. 航空科学技术, 2020,31(11): 7-13. |
| LI X K, WANG X, LIU J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J]. Aeronautical Science & Technology, 2020, 31(11): 7-13 (in Chinese). | |
| [9] | 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43-59. |
| QIAO W Y, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59 (in Chinese). | |
| [10] | 罗世彬, 孙雨航, 刘俊, 等. 高超声速乘波前体/进气道一体化设计综述[J]. 空天技术, 2022(6): 24-48. |
| LUO S B, SUN Y H, LIU J, et al. Review of hypersonic waverider forebody/inlet integrated design[J]. Aerospace Technology, 2022(6): 24-48 (in Chinese). | |
| [11] | 张文浩, 柳军, 丁峰. 内转式进气道/冯·卡门乘波体一体化设计方法[J]. 航空学报, 2020, 41(3): 123502. |
| ZHANG W H, LIU J, DING F. Integrated design method of inward turning inlet/Von Karman waverider[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123502 (in Chinese). | |
| [12] | LI Y Q, ZHENG X G, SHI C G, et al. Integration of inward-turning inlet with airframe based on dual-waverider concept[J]. Aerospace Science and Technology, 2020, 107: 106266. |
| [13] | LI Y Q, ZHENG X G, TENG J, et al. Dual waverider concept for inlet-airframe integration with controllable wall pressure distribution: AIAA-2017-2225[R]. Reston: AIAA, 2017. |
| [14] | 郑晓刚, 林德寿, 方啸雷, 等. 基于局部偏转吻切方法的背部进气高超飞行器一体化设计研究[J]. 空天技术, 2023(5): 1-10. |
| ZHENG X G, LIN D S, FANG X L, et al. Research on the integration design of hypersonic vehicles with dorsal inlets based on the local-turning osculating cones method[J]. Aerospace Technology, 2023(5): 1-10 (in Chinese). | |
| [15] | 南向军, 张堃元, 金志光. 乘波前体两侧高超声速内收缩进气道一体化设计[J]. 航空学报, 2012, 33(8): 1417-1426. |
| NAN X J, ZHANG K Y, JIN Z G. Integrated design of waverider forebody and lateral hypersonic inward turning inlets[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1417-1426 (in Chinese). | |
| [16] | DING F, LIU J, SHEN C B, et al. Novel inlet-airframe integration methodology for hypersonic waverider vehicles[J]. Acta Astronautica, 2015, 111: 178-197. |
| [17] | 贺旭照, 卫锋, 刘福军, 等. 最小波阻锥导乘波体和三维内转式进气道一体化设计[J]. 空气动力学学报, 2022, 40(1): 77-83. |
| HE X Z, WEI F, LIU F J, et al. Integrated design of minimal wave drag cone-derived waveriders and three-dimensional inward turning inlets[J]. Journal of Experiments in Fluid Mechanics, 2022, 40(1): 77-83 (in Chinese). | |
| [18] | 李永洲, 张堃元, 钟启涛. 四段修型弥散反射激波中心体基准流场研究[J]. 航空动力学报, 2014, 29(9): 2055-2062. |
| LI Y Z, ZHANG K Y, ZHONG Q T. Investigation of basic flowfield with center body consisting of four spline curves diffusing reflected shock wave[J]. Journal of Aerospace Power, 2014, 29(9): 2055-2062 (in Chinese). | |
| [19] | 何家祥, 金东海. 基于Busemann压升规律的可控消波内转基准流场设计[J]. 航空动力学报, 2017, 32(5): 1168-1175. |
| HE J X, JIN D H. Busemann pressure rise distribution based design of inward turning basic flowfield with controlled and cancelled shock waves[J]. Journal of Aerospace Power, 2017, 32(5): 1168-1175 (in Chinese). | |
| [20] | 李永洲, 张堃元, 朱伟, 等. 双弯曲入射激波的可控中心体内收缩基准流场设计[J]. 航空动力学报, 2015, 30(3): 563-570. |
| LI Y Z, ZHANG K Y, ZHU W, et al. Design for inward turning basic flowfield with controlled center body and two incident curved shock waves[J]. Journal of Aerospace Power, 2015, 30(3): 563-570 (in Chinese). | |
| [21] | 卫锋, 贺旭照, 贺元元, 等. 三维内转式进气道双激波基准流场的设计方法[J]. 推进技术, 2015, 36(3): 358-364. |
| WEI F, HE X Z, HE Y Y, et al. Design method of dual-shock wave basic flow-field for inward turning inlet[J]. Journal of Propulsion Technology, 2015, 36(3): 358-364 (in Chinese). | |
| [22] | 丁峰. 吸气式高超声速飞行器内外流一体化“全乘波”气动设计理论和方法研究[D]. 长沙: 国防科技大学, 2016. |
| DING F. Study on the theory and method of aerodynamic design of “full wave” for air-breathing hypersonic vehicle with internal and external flow integration[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). | |
| [23] | 陈军, 屈峰, 付俊杰. 基于遗传/梯度混合优化策略的高超内转式进气道设计方法研究[J]. 航空学报, 2025, 46(3): 245-266. |
| CHEN J, QU F, FU J J, et al. Research on design method of the hypersonic inward turning inlet based on genetic and gradient hybrid optimization strategy[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 245-266. | |
| [24] | 王晓峰, 屈峰, 付俊杰, 等. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023, 44(19): 56-72. |
| WANG X F, QU F, FU J J, et al. Discretized adjoint based aerodynamic design optimization for the hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 56-72 (in Chinese). | |
| [25] | DRAYNA T, NOMPELIS I, CANDLER G. Hypersonic inward turning inlets: Design and optimization: AIAA-2006-0297[R]. Reston: AIAA, 2006. |
| [26] | ANDERSON J D. Fundamentals of Aerodynamics[M]. 4th. New York: McGraw Hill Companies, Inc., 2006. |
| [27] | 王旭东, 王江峰, 程克明, 等. 黏性边界层修正对前体/进气道一体化乘波布局气动性能影响分析[J]. 空气动力学学报, 2021, 39(3): 62-70. |
| WANG X D, WANG J F, CHENG K M, et al. Aerodynamic analysis of viscous boundary layer correction on integrated airframe-inlet waverider[J]. Acta Aerodynamica Sinica, 2021, 39(3): 62-70 (in Chinese). | |
| [28] | 陈栋梁. 流线追踪Busemann进气道粘性修正方法研究[D]. 长沙: 国防科技大学, 2009. |
| CHEN D L. Study on viscosity correction method of Busemann inlet with streamline tracking[D]. Changsha: National University of Defense Technology, 2009 (in Chinese). | |
| [29] | ZUCROW M J, HOFFMAN J D. Gas dynamics, Vol. 1[M]. New York: John Wiley and Sons, Inc., 1976. |
| [30] | ZHONG J X, QU F, SUN D, et al. Low-frequency unsteadiness mechanisms of unstart flow in an inlet with rectangular-to-elliptical shape transition under off-design condition at a Mach number of 4[J]. Journal of Fluid Mechanics, 2024, 991: A9. |
| [31] | JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7): 929-935. |
| [32] | REINARTZ B U, HERRMANN C D, BALLMANN J, et al. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment[J]. Journal of Propulsion and Power, 2003, 19(5): 868-875. |
| [33] | 刘传振, 白鹏, 陈冰雁, 等. 定平面形状乘波体及设计变量影响分析[J]. 宇航学报, 2017, 38(5): 451-458. |
| LIU C Z, BAI P, CHEN B Y, et al. Analysis on design variables for planform-controllable waverider[J]. Journal of Astronautics, 2017, 38(5): 451-458 (in Chinese). | |
| [34] | 李永洲. 马赫数分布可控的高超声速内收缩进气道及其一体化设计研究[D]. 南京: 南京航空航天大学, 2014. |
| LI Y Z. Study on hypersonic internal contraction inlet with controllable Mach number distribution and its integrated design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese). | |
| [35] | MOLDER S, TIMOFEEV E, TAHIR R. Flow starting in high compression hypersonic air inlets by mass spillage: AIAA-2004-4130[R]. Reston: AIAA, 2004. |
| [36] | NAJAFIYAZDI A, TAHIR R, TIMOFEEV E, et al. Analytical and numerical study of flow starting in supersonic inlets by mass spillage: AIAA-2007-5072[R]. Reston: AIAA, 2007. |
| [37] | 董昊, 耿玺, 程克明, 等. 高超声速内收缩进气道设计与优化[M]. 北京: 科学出版社, 2018. |
| DONG H, GENG X, CHENG K M, et al. Design and optimization of hypersonic inward turning inlet[M]. Beijing: Science Press, 2018 (in Chinese). | |
| [38] | 南向军. 压升规律可控的高超声速内收缩进气道设计方法研究[D]. 南京: 南京航空航天大学, 2012. |
| NAN X J. Investigation on design methodology of hypersonic inward turning inlets with controlled pressure rise law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
| [39] | 钟亚飞, 马宏伟, 郭君德, 等. 航空发动机进气总压畸变地面试验数据处理方法综述[J]. 航空发动机, 2021, 47(1): 72-85. |
| ZHONG Y F, MA H W, GUO J D, et al. Review of ground test data processing method of aeroengine inlet total pressure distortion[J]. Aeroengine, 2021, 47(1): 72-85 (in Chinese). | |
| [40] | SUN B, ZHANG K Y. Empirical equation for self-starting limit of supersonic inlets[J]. Journal of Propulsion and Power, 2010, 26(4): 874-875. |
| [1] | Xiaogang ZHENG, Zhancang HU, Zejun CAI, Chongguang SHI, Chengxiang ZHU, Yancheng YOU. Design of 3D inward-turning inlet considering cruising angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631233-631233. |
| [2] | Xiaogang ZHENG, Chongguang SHI, Jiale ZHANG, Mi ZHANG, Wenlei ZHU, Chengxiang ZHU, Yancheng YOU. Research progress review on hypersonic three-dimensional inward-turning inlet [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631245-631245. |
| [3] | Jun CHEN, Feng QU, Junjie FU. Design method of hypersonic inward turning inlet based on genetic and gradient hybrid optimization strategy [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 130808-130808. |
| [4] | Lili CHEN, Jianxia LIU, Juntao ZHANG, Zheng GUO, Anping WU, Zhongxi HOU. Waverider forebody design method with longitudinal segments and multi-stage compression [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128744-128744. |
| [5] | Dingchong LYU, Shoujun ZHAO, Si ZENG, Jian FU, Xintong HU, Huixiang LIU, Kefei MIAO, Yongling FU. Key technologies and challenges of high⁃performance servo⁃motor⁃pumps [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 630225-630225. |
| [6] | Weihong ZHANG, Han ZHOU, Shaoying LI, Jihong ZHU, Lu ZHOU. Material⁃structure integrated design for high⁃performance aerospace thin⁃walled component [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 627428-627428. |
| [7] | Shuai HAO, Tielin MA, Yi WANG, Jinwu XIANG, Hongzhong MA, Baifeng JIANG, Jun CAO. Progress and application of key technologies of SensorCraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 27034-027034. |
| [8] | Yuanyuan TU, Dayi WANG, Xiangyan ZHANG, Jiaxing LI, Xiaofeng HUANG. Reconfigurability and autonomous reconfiguration methods of spacecraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628855-628855. |
| [9] | Yulin DING, Zhonghua HAN, Jianling QIAO, Han NIE, Wenping SONG, Bifeng SONG. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626310-626310. |
| [10] | Yongzhou LI, Di SUN, Renhua WANG, Kunyuan ZHANG. Design of inward turning inlet with controlled Mach number under non-uniform inflow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 127857-127857. |
| [11] | WANG Zhixiang, LEI Yongjun, DUAN Jingbo, OUYANG Xing, ZHANG Dapeng, WANG Jie. Multi-region integrated design and optimization of concentrated-force diffusion component in heavy-lift launch vehicle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 225135-225135. |
| [12] | ZHANG Wenhao, LIU Jun, DING Feng. Integrated design method of inward turning inlet/Von Karman waverider [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 123502-123502. |
| [13] | JIANG Yongsong, ZHENG Wentao, ZHAO Hang, YANG Mingsui, WANG Yongmei. Low noise design of fan outlet guide vane, part Ⅰ: Method and optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(10): 122955-122955. |
| [14] | ZHENG Wentao, JIANG Yongsong, ZHAO Hang, PAN Ruochi, ZHAO Yong. Low noise design of fan outlet guide vane, part Ⅱ: Numerical verifications [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(10): 122956-122956. |
| [15] | SHEN Zhengyang, CHEN Xiaoming, HUANG Lingcai. Challenges for aircraft design due to special mission models of large-scale amphibious aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522400-522400. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

