Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (6): 28843-028843.doi: 10.7527/S1000-6893.2023.28843
• Reviews • Previous Articles Next Articles
Wei ZHENG1, Yusong WANG1, Kun JIANG2, Yidi WANG1()
Received:
2023-04-10
Revised:
2023-05-09
Accepted:
2023-09-05
Online:
2024-03-25
Published:
2023-12-01
Contact:
Yidi WANG
E-mail:wangyidi_nav@163.com
Supported by:
CLC Number:
Wei ZHENG, Yusong WANG, Kun JIANG, Yidi WANG. Space experiments on X-ray pulsar navigation: Progress and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28843-028843.
Table 1
On-orbit signal processing and navigation methods used in pulsar navigation space experiments
空间试验任务 | 在轨信号处理方法 | 在轨信号处理方法主要特点 | 导航定位方法 | 导航定位方法主要特点 | 文献 |
---|---|---|---|---|---|
SEXTANT | 轨道动力学辅助法 | 将轨道动力学模型引入信号处理,不需要对航天器轨道进行假设,适用范围广,但存在计算量较大的问题 | 基于Kalman滤波的方法 | 直接将脉冲相位和多普勒频率作为测量量。在后续的地面试验中实现了钟差的校正 | [ |
XPNAV-1 | “折叠-拟合-再折叠”法 | 方法简单,但基于分段线性假设,不适用于处理近地轨道航天器的毫秒脉冲星观测数据 | 方法 基于控制点轨道修正的 | 适合仅能观测到单颗脉冲星的情况 | [ |
POLAR | - | - | SEPO | 实现简单,但计算量大 | [ |
HXMT |
Table 2
X-ray detectors used in space experiments on pulsar navigation
航天器 | 探测终端 | 前端 | 后端 | 探测能区/keV | 文献 |
---|---|---|---|---|---|
ISS | NICER | 单次反射的掠入射聚焦型光学系统 | SDD | 0.2~12 | [ |
TG-2 | POLAR | 准直型光学系统 | 塑料闪烁体 | 15~500 | [ |
XPNAV-1 | TSXS | 单次反射的掠入射聚焦型光学系统 | SDD | 0.5~10 | [ |
HTPC | 微孔光学系统 | MCP | 1~10 | [ | |
HXMT | HE | 准直型光学系统 | NaI(Tl)/CsI(Na)复合闪烁体 | 20~250 | [ |
ME | 准直型光学系统 | Si-PIN | 5~30 | [ | |
ME | 准直型光学系统 | SCD | 1~15 | [ |
1 | 吴伟仁, 于登云. 深空探测发展与未来关键技术[J]. 深空探测学报, 2014, 1(1): 5-17. |
WU W R, YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17 (in Chinese). | |
2 | 吴伟仁, 于登云, 黄江川, 等. 太阳系边际探测研究[J]. 中国科学: 信息科学, 2019, 49(1): 1-16. |
WU W R, YU D Y, HUANG J C, et al. Exploring the solar system boundary[J]. Scientia Sinica (Informationis), 2019, 49(1): 1-16 (in Chinese). | |
3 | WANG Y D, ZHENG W, ZHANG S N, et al. Review of X-ray pulsar spacecraft autonomous navigation[J]. Chinese Journal of Aeronautics, 2023, 36(10): 44-63. |
4 | JAMES N, ABELLO R, LANUCARA M, et al. Implementation of an ESA delta-DOR capability[J]. Acta Astronautica, 2009, 64(11-12): 1041-1049. |
5 | BECKER W, BERNHARDT M G, JESSNER A. Autonomous spacecraft navigation with pulsars[J]. 2013(7): 11–28. |
6 | WILLIAMS B. Technical challenges and results for navigation of NEAR shoemaker[J]. Johns Hopkins Apl Technical Digest, 2002, 23: 34-45. |
7 | 房建成, 宁晓琳, 马辛, 等. 深空探测器自主天文导航技术综述[J]. 飞控与探测, 2018, 1(1): 1-15. |
FANG J C, NING X L, MA X, et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control & Detection, 2018, 1(1): 1-15 (in Chinese). | |
8 | MOURIKIS A I, TRAWNY N, ROUMELIOTIS S I, et al. Vision-aided inertial navigation for spacecraft entry, descent, and landing[J]. IEEE Transactions on Robotics, 2009, 25(2): 264-280. |
9 | AMZAJERDIAN F, PIERROTTET D, PETWAY L, et al. Lidar systems for precision navigation and safe landing on planetary bodies[C]∥Proc SPIE 8192, International Symposium on Photoelectronic Detection and Imaging 2011: Laser Sensing and Imaging; and Biological and Medical Applications of Photonics Sensing and Imaging, 2011: 27-33. |
10 | SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation[D]. Maryland: University of Maryland, 2005. |
11 | CHESTER T, BUTMAN S. Navigation using X-ray pulsars[R]. Washington: NASA, 1981. |
12 | YU W H, SEMPER S R, MITCHELL J W, et al. NASA SEXTANT mission operations architecture[J]. Acta Astronautica, 2020, 176: 531-541. |
13 | ARZOUMANIAN Z, GENDREAU K C, BAKER C L, et al. The neutron star interior composition explorer (NICER): Mission definition[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 2014, 9144: 579-587. |
14 | WINTERNITZ L M B, HASSOUNEH M A, MITCHELL J W, et al. X-ray pulsar navigation algorithms and testbed for SEXTANT[C]∥2015 IEEE Aerospace Conference. Piscataway: IEEE Press, 2015: 1-14. |
15 | MITCHELL J W, WINTERNITZ L B, HASSOUNEH M A, et al. Sextant X-ray pulsar navigation demon-stration: Initial on-orbit results[M]∥Guidance, Navigation, and Control 2018, Pts I-Ii: Advances in the Astronautical Sciences, 2018: 1229-1240. |
16 | 郑世界, 葛明玉, 韩大炜, 等. 基于天宫二号POLAR的脉冲星导航实验[J]. 中国科学: 物理学 力学 天文学, 2017, 47(9): 120-128. |
ZHENG S J, GE M Y, HAN D W, et al. Test of pulsar navigation with POLAR on TG-2 space station[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(9): 120-128 (in Chinese). | |
17 | 中国科学院粒子天体物理重点实验室.天宫二号伽马暴偏振探测仪——POLAR[EB/OL]. [2023-03-01]. . |
Chinese academy of sciences, key laboratory of particle astrophysics. Polarization detector for TG-2 gamma storm-POLAR [EB/OL]. [2023-03-01]. (in Chinese). | |
18 | 姜坤, 焦文海, 郝晓龙, 等. 脉冲星试验01星科学试验与成果[J]. 航空学报, 2023, 44(3): 97-106. |
JIANG K, JIAO W H, HAO X L, et al. Scientific experiments and achievements of XPNAV-1[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(3): 97-106 (in Chinese). | |
19 | 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报, 2019, 27(3): 281-287. |
SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 281-287 (in Chinese). | |
20 | 李连升, 梅志武, 吕政欣, 等. X射线脉冲星导航探测技术发展综述[J]. 兵器装备工程学报, 2017, 38(5): 1-9. |
LI L S, MEI Z W, LYU Z X, et al. Overview of the development of X-ray pulsar navigation detection technology[J]. Journal of Ordnance Equipment Engineering, 2017, 38(5): 1-9 (in Chinese). | |
21 | HUANG L W, SHUAI P, ZHANG X Y, et al. Pulsar-based navigation results: Data processing of the X-ray pulsar navigation-I telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(1): 018003. |
22 | ZHENG S, ZHANG S, LU F, et al. In-orbit demonstration of X-ray pulsar navigation with the insight-HXMT satellite[J]. Astrophysical Journal Supplement Series, 2019, 244(1):1-18. |
23 | ZHANG S N, LI T P, LU F J, et al. Overview to the hard X-ray modulation telescope (Insight-HXMT) satellite[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(4): 249502. |
24 | 张龙, 倪润立, 顾荃莹, 等. 硬X射线调制望远镜卫星总体方案及技术特点[J]. 航天器工程, 2018, 27(5): 9-13. |
ZHANG L, NI R L, GU Q Y, et al. HXMT satellite design and technological characteristics[J]. Spacecraft Engineering, 2018, 27(5): 9-13 (in Chinese). | |
25 | WANG Y D, ZHANG S N, GE M Y, et al. Fast on-orbit pulse phase estimation of X-ray crab pulsar for XNAV flight experiments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3395-3404. |
26 | WANG Y D, ZHENG W, ZHANG D P. X-ray pulsar/starlight Doppler deeply-integrated navigation method[J]. Journal of Navigation, 2017, 70(4): 829-846. |
27 | WANG Y D, ZHENG W. Pulse phase estimation of X-ray pulsar with the aid of vehicle orbital dynamics[J]. Journal of Navigation, 2016, 69(2): 414-432. |
28 | WANG Y D, ZHANG W. Pulsar phase and Doppler frequency estimation for XNAV using on-orbit epoch folding[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2210-2219. |
29 | WANG Y S, WANG Y D, ZHENG W. On-orbit pulse phase estimation based on CE-Adam algorithm[J]. Aerospace, 2021, 8(4): 95. |
30 | WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results[C]∥Proceedings of the 2018 SpaceOps Conference. Reston: AIAA, 2018. |
31 | 张大鹏, 呼延宗泊, 李恒年. 基于卫星实测数据的X射线脉冲星导航体制验证[J]. 航空学报, 2023, 44(3): 526510. |
ZHANG D P, HUYAN Z B, LI H N. X-ray pulsar-based navigation verification based on satellite measured data[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(3): 526510 (in Chinese). | |
32 | 周可人. 基于XPNAV-1实测数据的X射线脉冲星单星定轨仿真分析[D]. 西安: 西安理工大学, 2020. |
ZHOU K R. Simulation of single X-ray pulsar orbit determination on XPNAV-1 measured data[D]. Xi’an: Xi’an University of Technology, 2020 (in Chinese). | |
33 | OKAJIMA T, SOONG Y, BALSAMO E R, et al. Performance of NICER flight X-ray concentrator[C]∥ SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 1495-1501. |
34 | KEITH C. NASA Set to Demonstrate X-ray Communications in Space[EB/OL]. (2019-02-01) [2023-05-09]. . |
35 | 肖华林, 董永伟, 吴伯冰, 等. TG-2伽玛暴偏振探测仪POLAR[J]. 载人航天, 2015, 21(1): 32-36, 43. |
XIAO H L, DONG Y W, WU B B, et al. POLAR gamma ray burst polarimeter onboard TG-2 spacelab[J]. Manned Spaceflight, 2015, 21(1): 32-36, 43 (in Chinese). | |
36 | 李旭芳, 刘聪展, 张翼飞, 等. 硬X射线调制望远镜卫星高能望远镜设计与验证[J]. 航天器工程, 2018, 27(5): 120-126. |
LI X F, LIU C Z, ZHANG Y F, et al. Design and verification of high energy telescope onboard HXMT satellite[J]. Spacecraft Engineering, 2018, 27(5): 120-126 (in Chinese). | |
37 | 曹学蕾, 姜维春, 张万昌, 等. 硬X射线调制望远镜卫星中能望远镜设计与验证[J]. 航天器工程, 2018, 27(5): 127-133. |
CAO X L, JIANG W C, ZHANG W C, et al. Design and verification of medium energy telescope onboard HXMT satellite[J]. Spacecraft Engineering, 2018, 27(5): 127-133 (in Chinese). | |
38 | 陈勇, 崔苇苇, 李炜, 等. 硬X射线调制望远镜卫星低能望远镜设计与验证[J]. 航天器工程, 2018, 27(5): 134-138. |
CHEN Y, CUI W W, LI W, et al. Design and verification of low energy telescope onboard HXMT satellite[J]. Spacecraft Engineering, 2018, 27(5): 134-138 (in Chinese). | |
39 | LI L H, GU Y, ZHANG Z, et al. An effective system for evaluating the performance of micro pore optics used for lobster eye X-ray telescope[J]. Optical Materials, 2023, 136: 113383. |
40 | 国际上首次实现大视场龙虾眼 X 射线成像观测[EB/OL]. (2022-12-14) [2023-06-08]. . |
First wide field-of-view X-ray observations by a lobster-eye focusing telescope in orbit [EB/OL]. (2022-12-14) [2023-06-08]. (in Chinese). | |
41 | 袁为民, 张臣, 陈勇, 等. 爱因斯坦探针: 探索变幻多姿的X射线宇宙[J]. 中国科学: 物理学 力学 天文学, 2018, 48(3): 6-25. |
YUAN W M, ZHANG C, CHEN Y, et al. Einstein probe: Exploring the ever-changing X-ray universe[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(3): 6-25 (in Chinese). | |
42 | ZHANG S N, SANTANGELO A, FEROCI M, et al. The enhanced X-ray timing and polarimetry mission—eXTP[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(2): 29502. |
[1] | Yusong WANG, Yidi WANG, Wei ZHENG. Solar information assisted pulse phase estimation method and navigation application [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727651-727651. |
[2] | Wei ZHENG, Yusong WANG, Kun JIANG, Yidi WANG. Overview of X-ray pulsar-based navigation methods [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 527451-527451. |
[3] | Qingyong ZHOU, Ziqing WEI, Yaohu LEI, Siwei LIU, Xiaolong HAO, Fumei WU, Yanji YANG, Pengfei QIANG. X-ray telescope for pulsar deep space reference and its development vision [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526608-526608. |
[4] | Kai XIONG, Chunling WEI, Liansheng LI, Peng ZHOU. Pulsar/inter-satellite LOS integrated navigation based on augmented QLEKF [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526232-526232. |
[5] | Guodong XU, Danlei ZHANG, Zhendong XU. Arrival time processing method of pulsar characteristic frequency signals [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526185-526185. |
[6] | Dapeng ZHANG, Zongbo HUYAN, Hengnian LI. X-ray pulsar-based navigation verification based on satellite measured data [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526510-526510. |
[7] | Qingyong ZHOU, Linli YAN, Liansheng LI, Laiping FENG, Yongqiang SHI, Pengfei SUN, Liu FANG, Long WANG. On⁃orbit stability analysis of FXPT on XPNAV⁃1 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526610-526610. |
[8] | Minglei TONG, Mengna HAN, Tinggao YANG, Chengshi ZHAO, Xingzhi ZHU. Correcting frequency of a spaceborne atomic clock using X-ray observations of Crab pulsar [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526566-526566. |
[9] | Lizhi SHENG, Wei ZHENG, Tong SU, Dapeng ZHANG, Yidi WANG, Xianghui YANG, Neng XU, Zhize LI. Ground test bench for X-ray pulsar navigation dynamic simulation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526656-526656. |
[10] | Junqiu YIN, Yunpeng LIU, Xiaobin TANG. Spacecraft positioning method based on pulsar-like X-ray beacon [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526596-526596. |
[11] | Kun JIANG, Wenhai JIAO, Xiaolong HAO, Ying LIU, Yidi WANG, Xinyuan ZHANG, Ji GUO. Scientific experiments and achievements of XPNAV-1 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526611-526611. |
[12] | Jinsheng LIU, Bo WANG, Juan SONG, Wencong WANG, Jingjing LI, Zhenhua XU. Estimation of space radiation background of Wolter‑I X‑ray pulsar detector [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526599-526599. |
[13] | LIU Jin, HAN Xuexia, NING Xiaolin, CHEN Xiao, KANG Zhiwei. Ultra-fast estimation of pulsar period based on EMD-CS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(8): 623486-623486. |
[14] | LI Liansheng, DENG Loulou, MEI Zhiwu, LYU Zhengxin, LIU Jihong, ZUO Fuchang. Monte Carlo-based multiphysics coupling analysis method for focusing X-ray pulsar telescope [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(4): 1249-1260. |
[15] | LI Min, ZHANG Yingchun, GENG Yunhai, ZHU Baolong, LI Huayi. A robust extended Kalman filter algorithm for X-ray pulsar navigation system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(4): 1305-1315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341