ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (3): 526608-526608.doi: 10.7527/S1000-6893.2021.26608
• Reviews • Previous Articles Next Articles
Qingyong ZHOU1,2(), Ziqing WEI1,2, Yaohu LEI3, Siwei LIU1,2, Xiaolong HAO4, Fumei WU1,2, Yanji YANG5, Pengfei QIANG6
Received:
2021-11-02
Revised:
2021-11-26
Accepted:
2021-12-29
Online:
2023-02-15
Published:
2023-02-15
Contact:
Qingyong ZHOU
E-mail:zjlzqy1986@163.com
Supported by:
CLC Number:
Qingyong ZHOU, Ziqing WEI, Yaohu LEI, Siwei LIU, Xiaolong HAO, Fumei WU, Yanji YANG, Pengfei QIANG. X-ray telescope for pulsar deep space reference and its development vision[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526608-526608.
Table 2
Summary of focused X-ray telescope projects
项目 | X射线望远镜载荷 | 发射年份 | 膜层 | 焦距/m | 能区/keV | 有效面积/cm2 | 角分辨 |
---|---|---|---|---|---|---|---|
HEAO-2[ | 1台4层石英聚焦望远镜 | 1978 | Ni | 3.4 | 0.2~4 | 400 @ 0.25 keV 30 @ 4 keV | 最低至2″ |
EXOSAT[ | 2台铍聚焦望远镜 | 1983 | Au | 1.1 | 0.04~2 | 130@ 0.15 keV | 5″ |
ROSAT[ | 1台微晶玻璃聚焦望远镜 | 1990 | Au | 2.4 | 0.1~2 | 1 141 | 5″ |
ASCA(ASTRO-D)[ | 4台120层圆锥嵌套望远镜 | 1993 | Au | 3.5 | 0.5~10 | 1 200 @ 1 keV 600 @ 7 keV | 3′ |
BeppoSAX[ | 1台30层圆锥嵌套望远镜 | 1996 | Au | 1.85 | 0.1~10 | 22 @ 0.28 keV 50 @ 6 keV | 9.7′@ 0.28 keV 2.1′ @ 6 keV |
Chandra[ | 1台4层嵌套玻璃望远镜 | 1999 | Ir | 10 | 0.2~10 | 400@5 keV | 0.5″ |
XMM Newton[ | 3台58层嵌套镍镀金望远镜 | 1999 | Au | 7.5 | 0.1~12 | 4 425 @ 1.5 keV 1 740 @ 8 keV | 5″~14″ |
Swift/JET-X[ | 1台12层嵌套镍镀金望远镜 | 2004 | Au | 3.5 | 0.2~10 | 164.6@1.5 keV 72.9@8.1 keV | ~20″ |
Suzaku[ | 4台圆锥嵌套望远镜 | 2005 | Au | 4.75 | 0.2~12 | 450@1 keV 250@7 keV | 2′ |
NuSTAR[ | 1台133层热弯玻璃望远镜 | 2012 | Pt/C W/Si | 10 | 3~79 | 847 @9 keV 60 @78 keV | 58″ |
AstroSat[ | 1台40层圆锥嵌套望远镜 | 2015 | Au | 2 | 0.3~8 | 128@1.5 keV | 2″ |
Hitomi[ | 2台硬X射线望远镜(HXT) 1台软X射线成像望远镜(SXI) 1台软X射线光谱望远镜(SXS) | 2016 | Pt/C(HXT) | 12(HXT) 5.6(SXI) 5.6(SXS) | 5~80(HXT) 0.4~12(SXI) 0.3~12(SXS) | 300@30 keV(HXT) 370@1 keV(SXI) 250@1 keV(SXS) | 1.9'@30 keV(HXT) 1.3'(SXI) 1.2'(SXS) |
XPNAV-01[ | 1台时变软X射线光谱仪(TSXS) | 2016 | Au | 1.15 | 0.5~9 | 2.67@1 keV | 15′ |
NICER[ | 56台单次掠射聚焦望远镜 | 2017 | Au | ~1.0 | 0.2~12 | 1 793@1.5 keV | 6' FOV非成像 |
eROSITA[ | 7台54层嵌套镍镀金望远镜 | 2019 | Au | 1.6 | 0.3~10 | ~2 700@1.5 keV | 16'' |
ART-XC[ | 7台28层X射线掠入射镜望远镜 | 2018 | Ir | 2.7 | 4~30 | ~450@8 keV | 1' |
IXPE[ | 3台24层嵌套X射线望远镜 | 2021 | Ni-Co | 4 | 2~8 | 200@2.3 keV(每台) | 25'' |
SVOM[ | 1台龙虾眼结构X射线望远镜 | 2023(预) | Ir | 1.15 | 0.2~10 | 24@1 keV | 不超过6.5' |
CubeX[ | 1台34层X射线成像光谱仪(XIS) | 2023(预) | Au | 0.5 | 0.4~7 | 24@1 keV | 1' |
Einstein Probe[ | 2台54层后随X射线望远镜 | 2023(预) | Au | 1.6 | 0.3~10 | 600@1.25 keV | 30″ |
eXTP[ | 9台能谱测量聚焦望远镜阵列(SFA) 4台偏振测量聚焦望远镜阵列(PFA) | 2027(预) | Au | 5.25 | 0.5~10 | ~820@2 keV(每台) >550@6 keV(每台) | 1'(SFA) 30'' (goal 15'') (PFA) |
Table 3
Comparison and applications of different X-ray detectors[13]
类型 | 主要原理 | 技术特点 | 部分卫星应用 |
---|---|---|---|
正比计数器 | 气体电离正比放大 | 技术成熟度高,较好的时间分辨率(约1 μs)和良好探测效率,体积较大,噪声信号抑制甄别能力较差,适合1~30 keV能段测量,高压工作,气体容易泄露,结构要求高 | Uhuru(1970)、HEAO-1(1977)、Einstein(1978)、EXOSAT(1983)、Ariel-5(1974)、ROSAT(1990)、ARGOS(1999) |
微通道板 | 光电转换及通道电子倍增 | 技术成熟,室温工作,最高的时间分辨率,10 ps。量化效率较低,适合0.1~10 keV的软X射线,本底噪声强,高压工作 | ROSAT(1990)、Chandra/HRC (1999)、XPNAV-1(2016)等 |
CCD型半导体 | 位阱效应 | 功耗低,易于小型化,位置分辨优于100 μm,适合0.1~10 keV的软X射线探测,低温工作 | Astro-E(2005)、Chandra/ACIS(1999)、XMM-Newton(1999)、Suzaku(2005)和HXMT/LE(2015) |
硅Pin、SDD | 电子空穴对效应 | 探测效率较高,能量分辨好,体积小,功耗低,易于大面积实现,低温工作 | XPNAV-1(2016)、HXMT/ME(2017)、SEXTANT(2017) |
闪烁体 | 原子激发退激发光 | 探测效率高,结构较为灵活,部分闪烁体材料时间分辨率较高,便于符合或反符合测量,通常用于硬X射线能段 | Vela-5B(1969)、OSO-7(1971)、OSO-8(1975)、HEAO-1(A4)(1977)、CGRO(1991)、BeppoSAX(1996)、RXTE(1995)、HXMT/HE(2017)等 |
量热计 | 能量沉积温度变化 | 技术难度大,探测面积小,时间分辨可达1 ns,超低温工作,难以用于弱信号测量,支撑结构复杂 | ASTRO-H(2016) |
Table 4
Theoretical estimates and actual observations of five pulsars observed by NICER[102]
脉冲星名称 | 理论估计值/(cts·s-1) | 实际观测结果/(cts·s-1) | SNR估计 | ||||||
---|---|---|---|---|---|---|---|---|---|
探测本底 | 弥散本底 | 星源直流信号 | 非脉冲计数 | 脉冲计数 | 总计数 | 非脉冲计数 | 脉冲计数 | ||
J0534+2200 | 0.05 | 0.15 | 13 860.0 | 13 860.2 | 660 | 11 009.0 | 10 348.8 | 660.2 | 629.21 |
J1939+2134 | 0.05 | 0.15 | 0.04 | 0.24 | 0.029 | 0.946 | 0.920 | 0.026 | 2.67 |
J1824-2452A | 0.05 | 0.15 | 0 | 0.22 | 0.093 | 1.403 | 1.333 | 0.070 | 5.91 |
J0030+0451 | 0.05 | 0.15 | 0.20 | 0.193 | 1.398 | 1.227 | 0.171 | 14.46 | |
J0437-4715 | 0.05 | 0.15 | 0.42 | 0.62 | 0.283 | 2.313 | 1.997 | 0.316 | 20.78 |
1 | 任红飞, 魏子卿, 刘思伟, 等. 国内外深空基准发展现状与启示[J]. 测绘科学与工程, 2020(3): 8-15. |
REN H F, WEI Z Q, LIU S W, et al. Development status and enlightenment of the deep space datum at home and abroad[J]. Geomatics Science and Engineering, 2020(3): 8-15 (in Chinese). | |
2 | 王小军, 汪小卫. 载人火星探测任务构架及其航天运输系统研究[J]. 中国航天, 2021(7): 8-14. |
WANG X J, WANG X W. Human Mars exploration mission architecture and corresponding space transportation system[J]. Aerospace China, 2021(7): 8-14 (in Chinese). | |
3 | 潘永信, 王赤. 国家深空探测战略可持续发展需求:行星科学研究[J]. 中国科学基金, 2021, 35(2): 181-185. |
PAN Y X, WANG C. Developing the planetary science research for the sustainable deep space exploration of China[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(2): 181-185 (in Chinese). | |
4 | 叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018(10): 4-10. |
YE P J, ZOU L Y, WANG D Y, et al. Development and prospect of Chinese deep space exploration[J]. Space International, 2018(10): 4-10 (in Chinese). | |
5 | HEWISH A, BELL S J, PILKINGTON J D H, et al. Observation of a rapidly pulsating radio source[J]. Nature, 1968, 217(5130): 709-713. |
6 | DOWNS G. Interplanetary navigation using pulsating radio sources: N74-34150 [R]. Washington, D.C.: NASA, 1974. |
7 | SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation [D].Maryland: University of Maryland, 2005: 159-175. |
8 | 郑伟, 王奕迪, 汤国建. X射线脉冲星导航理论与应用[M]. 北京: 科学出版社, 2015: 1-28. |
ZHENG W, WANG Y D, TANG G J. X-ray pulsar-based navigation: Theory and applications[M]. Beijing: Science Press, 2015: 1-28 (in Chinese). | |
9 | ANDREW L, FRANCIG S. Pulsar astronomy [M]. 3rd ed. London: Cambridge University Press, 2006: 50-89. |
10 | 周庆勇, 刘思伟, 郝晓龙, 等. 空间X射线观测确定脉冲星星历表参数精度分析[J]. 物理学报, 2016, 65(7): 368-377. |
ZHOU Q Y, LIU S W, HAO X L, et al. Analysis of measurement accuracy of ephemeris parameters for pulsar navigation based on the X-ray space observation[J]. Acta Physica Sinica, 2016, 65(7): 368-377 (in Chinese). | |
11 | 周庆勇, 魏子卿, 闫林丽, 等. 面向综合定位导航授时系统的天地基脉冲星时间研究[J]. 物理学报, 2021, 70(13): 471-483. |
ZHOU Q Y, WEI Z Q, YAN L L, et al. Space/ground based pulsar timescale for comprehensive PNT system[J]. Acta Physica Sinica, 2021, 70(13): 471-483 (in Chinese). | |
12 | 费保俊. 相对论在现代导航中的应用[M]. 2版. 北京: 国防工业出版社, 2015: 206-232. |
FEI B J. Application of relativity in modern navigation[M]. 2nd ed. Beijing: National Defense Industry Press, 2015: 206-232 (in Chinese). | |
13 | 周庆勇. 脉冲星计时模型和自转稳定性研究[D]. 郑州: 解放军信息工程大学, 2011: 1-155. |
ZHOU Q Y. Research on pulsar timing model and stability of spin behaviors[D]. Zhengzhou: PLA Information Engineering University, 2011: 1-155 (in Chinese). | |
14 | 吴伟仁, 于登云, 黄江川, 等. 太阳系边际探测研究[J]. 中国科学: 信息科学, 2019, 49(1): 1-16. |
WU W R, YU D Y, HUANG J C, et al. Exploring the solar system boundary[J]. Scientia Sinica (Informationis), 2019, 49(1): 1-16 (in Chinese). | |
15 | RAY P, SHEIKH S, GRAVEN P, et al. Deep space navigation using celestial X-ray sources[EB/OL]. (2008-01-30)[2021-12-26]. ,_ION_NTM_January_2008.pdf. |
16 | DAVE B. Overview of the XNAV program X-ray navigation using celestial sources[C]∥20th Annual AIAA/USU Conference on Small Satellites. Reston: AIAA, 2006: 1-11. |
17 | 黄良伟. 基于计时模型的X射线脉冲星自主导航理论与算法研究[D]. 北京: 清华大学, 2013: 1-14. |
HUANG LW. Theory and algorithm study in X-ray pulsar autonomous navigation based on pulsar timing model[D]. Beijing: Tsinghua University, 2013: 1-14 (in Chinese). | |
18 | NASA. 2015 NASA technology roadmaps TA5 communications naviation and orbital debris tracking and characterization syatems[EB/OL]. (2015-08-10)[2021-12-26]. . |
19 | ARZOUMANIAN Z, GENDREAU K C, BAKER C L, et al. The neutron star interior composition explorer (NICER): Mission definition[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 2014: 579-587. |
20 | MITCHELL J W, WINTERNITZ L B, HASSOUNEH M A, et al. SEXTANT X-ray pulsar navigation demonstration: Initial on-orbit results[C]∥41st Annual Guidance and Control Conference of American Astronautical Society, 2018: 1-12. |
21 | PEARLMAN A B, MAJID W A, PRINCE T A. Observations of radio magnetars with the deep space network[J]. Advances in Astronomy, 2019, 2019: 6325183. |
22 | KOCZ J, MAJID W, WHITE L, et al. Pulsar timing at the deep space network[DB/OL]. ArXiv preprint: 1703.01342, 2017. |
23 | STUPL J, EBERT M, MAURO D, et al. CubeX: A compact X-Ray telescope enables both X-Ray fluorescence imaging spectroscopy and pulsar timing based navigation[C]∥32nd Annual AIAA/USU Conference on Small Satellites, Reston: AIAA, 2018. |
24 | DENEVA J S, RAY P S, LOMMEN A, et al. High-precision X-ray timing of three millisecond pulsars with NICER: Stability estimates and comparison with radio[DB/OL]. ArXiv preprint: 1902.07130, 2019. |
25 | PRIZ R, GARBIN E, ROLDN P, et al. PulChron: A pulsar time scale demonstration for PNT systems[C]∥Proceedings of the 50th Annual Precise Time and Time Interval Systems and Applications Meeting. Institute of Navigation, 2019. |
26 | ZHENG S J, ZHANG S N, LU F J, et al. In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite[DB/OL]. ArXiv preprint: 1908.01922, 2019. |
27 | HUANG L W, SHUAI P, ZHANG X Y, et al. Pulsar-based navigation results: Data processing of the X-ray pulsar navigation-I telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(1): 018003. |
28 | 王奕迪. 深空探测中的X射线脉冲星导航方法研究[D]. 长沙: 国防科学技术大学, 2011: 57-81. |
WANG Y D. Research on the X-ray pulsar-based navigation in deep space exploration[D]. Changsha: National University of Defense Technology, 2011: 57-81 (in Chinese). | |
29 | HOBBS G, GUO L, CABALLERO R N, et al. A pulsar-based time-scale from the international pulsar timing array[J]. Monthly Notices of the Royal Astronomical Society, 2019, 491(4): 5951-5965. |
30 | 周庆勇, 魏子卿, 张华, 等. 基于双谱滤波的综合脉冲星时算法研究[J]. 天文学报, 2021, 62(2): 88-97. |
ZHOU Q Y, WEI Z Q, ZHANG H, et al. Research on ensemble pulsar time algorithm based on bispectral filter[J]. Acta Astronomica Sinica, 2021, 62(2): 88-97 (in Chinese). | |
31 | 杨元喜, 杨诚, 任夏. PNT智能服务[J]. 测绘学报, 2021, 50(8):1006-1012. |
YANG Y X, YANG C, REN X. PNT intelligent services[J]. Acta Geodaetica et Cartographica Sinica, 2021(8):1006-1012 (in Chinese). | |
32 | 谢军, 刘庆军, 边朗. 基于北斗系统的国家综合定位导航授时(PNT)体系发展设想[J]. 空间电子技术, 2017, 14(5): 1-6. |
XIE J, LIU Q J, BIAN L. Development assumption of national comprehensive PNT architecture based on BeiDou navigation satellite system[J]. Space Electronic Technology, 2017, 14(5): 1-6 (in Chinese). | |
33 | SHEMAR S, FRASER G, HEIL L, et al. Towards practical autonomous deep-space navigation using X-ray pulsar timing[J]. Experimental Astronomy, 2016, 42(2): 101-138. |
34 | 廖颖宇. 成像式X射线望远镜用模拟程序编写与测试方法研究[D]. 上海: 同济大学, 2020: 2-19 |
LIAO Y Y. Study on simulation program preparation and test method for imaging X-ray telescope [D]. Shanghai: Tongji University, 2020: 2-19 (in Chinese). | |
35 | KIRKPATRICK P, BAEZ A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 1948, 38(9): 766-774. |
36 | WOLTER V H. Mirror systems with glancing incidence on imaging producing optics for X-ray[J]. Annals of Physics, 1952, 6(10): 94-114. |
37 | PETRE R, SERLEMITSOS P J. Conical imaging mirrors for high-speed X-ray telescopes[J]. Applied Optics, 1985, 24(12): 1833. |
38 | SERLEMITSOS P J. Conical foil X-ray mirrors: Performance and projections[J]. Applied Optics, 1988, 27(8): 1447-1452. |
39 | SCHMIDT W K H. A proposed X-ray focusing device with wide field of view for use in X-ray astronomy[J]. Nuclear Instruments and Methods, 1975, 127(2): 285-292. |
40 | FRASER G W, CARPENTER J D, ROTHERY D A, et al. The mercury imaging X-ray spectrometer (MIXS) on bepicolombo[J]. Planetary and Space Science, 2010, 58(1-2): 79-95. |
41 | GIACCONI R, BRANDUARDI G, BRIEL U, et al. The Einstein/HEAO 2/X-ray observatory[J]. The Astrophysical Journal Letters, 1979, 230: 540. |
42 | UBERTINI P, GEHRELS N, CORBETT I, et al. Future of space astronomy: A global road map for the next decades[J]. Advances in Space Research, 2012, 50(1): 1-55. |
43 | 张双南. 我国空间天文发展的现状和展望[J]. 中国科学: 物理学 力学 天文学, 2012, 42(12): 1308-1320. |
ZHANG S N. Current status and future outlook of the development of China’s space astronomy[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2012, 42(12): 1308-1320 (in Chinese). | |
44 | 吴伯冰, 马宇蒨, 张双南, 等. 中国空间天文40周年[J]. 空间科学学报, 2021(1): 84-94. |
WU B B, MA Y Q, ZHANG S N, et al. 40 years of space astronomy in China[J]. Chinese Journal of Space Science, 2021(1): 84-94 (in Chinese). | |
45 | O’DELL S L, BRISSENDEN R J, DAVIS W N, et al. High-resolution X-ray telescopes[J]. Adaptive X-Ray Optics, 2010, 7803: 862315 |
46 | YOUNG P S. Fabrication of the high-resolution mirror assembly for the HEAO-2 X-ray telescope[C]∥Proc SPIE 0184, Space Optics Imaging X-Ray Optics Workshop, 1979: 131-138. |
47 | DE KORTE P A J, BLEEKER J A M, DEN BOGGENDE A J F, et al. The X-ray imaging telescopes on exosat[J]. Space Science Reviews, 1981, 30(1): 495-511. |
48 | SERLEMITSOS P J, JALOTA L, SOONG Y. The X-ray telescope on board ASCA[J]. Publications of the Astronomical Society of Japan, 1995, 47: 105-114. |
49 | TANAKA Y, INOUE H, HOLT S S. The X-ray astronomy satellite ASCA[J]. Publications of the Astronomical Society of Japan, 1994, 46(3): L37-L41. |
50 | PIRO L. Scientific capabilities and performances of the BeppoSAX mission[J]. Nuclear Physics B - Proceedings Supplements, 1999, 69(1-3): 3-11. |
51 | WEISSKOPF M C. Chandra X-ray optics[J]. Optical Engineering, 2012, 51(1): 011013. |
52 | LUMB D H. X-ray multi-mirror mission (XMM-Newton) observatory[J]. Optical Engineering, 2012, 51(1): 011009. |
53 | ASCHENBACH B, BRIEL U G, HABERL F, et al. Imaging performance of the XMM-Newton X-ray telescopes[C]∥Astronomical Telescopes and Instrumentation. Proc SPIE 4012, X-Ray Optics, Instruments, and Missions III, 2000, 4012: 731-739. |
54 | GONDOIN P, ASCHENBACH B, BEIJERSBERGEN M W, et al. Calibration of the first XXM flight mirror module: II. Effective area[C]∥SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Proc SPIE 3444, X-Ray Optics, Instruments, and Missions, 1998, 3444: 290-301. |
55 | BURROWS D N, HILL J E, NOUSEK J A, et al. The swift X-ray telescope[J]. Space Science Reviews, 2005, 120(3): 165-195. |
56 | TAGLIAFERRI G, MORETTI A, CAMPANA S, et al. Swift XRT effective area measured at the Panter end-to-end tests[C]∥Optical Science and Technology, SPIE's 48th Annual Meeting. Proc SPIE 5165, X-Ray and Gamma-Ray Instrumentation for Astronomy XIII, 2004, 5165: 241-250. |
57 | SERLEMITSOS P J, SOONG Y, CHAN K W, et al. The X-ray telescope onboard suzaku[J]. Publications of the Astronomical Society of Japan, 2007, 59(S1): S9-S21. |
58 | MADSEN K K, HARRISON F A, MARKWARDT C, et al. Calibration of the NuSTAR high energy focusing Xray telescope[DB/OL]. ArXiv preprint: 1504.01672, 2015. |
59 | CHRISTENSEN F E, JAKOBSEN A C, BREJNHOLT N F, et al. Coatings for the NuSTAR mission[C]∥SPIE Optical Engineering + Applications. Proc SPIE 8147, Optics for EUV, X-Ray, and Gamma-Ray Astronomy V, 2011, 8147: 298-316. |
60 | HARRISON F A, CRAIG W W, CHRISTENSEN F E, et al. The nuclear spectroscopic telescope array (NuSTAR) mission[DB/OL]. ArXiv preprint: 1301.7307, 2013. |
61 | SINGH K P, TANDON S N, AGRAWAL P C. Astrosat mission[J]. Proceedings of SPIE, 2014, 9144: 91441S. |
62 | TAKAHASHI T, MITSUDA K, KELLEY R, et al. The ASTRO-H X-ray observatory[J]. Proceedings of SPIE, 2012, 8443: 84431Z. |
63 | TAKAHASHI T, KOKUBUN M, MITSUDA K, et al. The Astro-H (Hitomi) X-ray astronomy satellite[J]. Proceedings of SPIE, 2016, 9905: 99050U. |
64 | SHI Y Q, MEI Z W, HE Y, et al. Ground calibration and in-orbit performance of the time-resolved soft X-ray spectrometer on board XPNAV-1[J]. Proceedings of SPIE, 2020, 6(3): 034006. |
65 | GENDREAU K C, ARZOUMANIAN Z, OKAJIMA T. The Neutron star Interior Composition ExploreR (NICER): An explorer mission of opportunity for soft X-ray timing spectroscopy[C]∥SPIE 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, 2012: 322-329. |
66 | FRIEDRICH P, BRAUNINGER H, BUDAU B, et al. Design and development of the eROSITA X-ray mirrors[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 7011, Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray, 2008: 853-860. |
67 | DENNERL K, ANDRITSCHKE R, BOHRINGER H, et al. The calibration of eROSITA on SRG[J]. Proceedings of SPIE, 2020, 11444: 114444Q. |
68 | PAVLINSKY M, LEVIN V, AKIMOV V, et al. ART-XC overview[J]. Proceedings of SPIE, 2018, 10699:106991Y. |
69 | PAVLINSKY M, TKACHENKO A, LEVIN V, et al. The ART-XC telescope on board the SRG observatory[DB/OL]. ArXiv preprint: 2103.12479, 2021. |
70 | BONGIORNO S D, KOLODZIEJCZAK J J, KILARU K, et al. Assembly of the IXPE mirror modules[C]∥ SPIE Optical Engineering + Applications. Proc SPIE 11822, Optics for EUV, X-Ray, and Gamma-Ray Astronomy X, 2021: 189-200. |
71 | RAMSEY B D, ATTINA P, BALDINI L, et al. The Imaging X-Ray Polarimetry Explorer (IXPE): Technical overview IV[C]∥SPIE Optical Engineering + Applications. Proc SPIE 11821, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, 2021: 225-236. |
72 | MERCIER K, GONZALEZ F, GOTZ D, et al. MXT instrument on-board the French-Chinese SVOM mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018: 505-519. |
73 | FELDMAN C H, WILLINGALE R, PEARSON J, et al. Calibration of a fully populated lobster eye optic for SVOM[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 2020: 182-194. |
74 | ZHANG J, QI L Q, YANG Y J, et al. Estimate of the background and sensitivity of the follow-up X-ray telescope onboard Einstein Probe[J]. Astroparticle Physics, 2022, 137: 102668. |
75 | CHEN Y, CUI W W, HAN D W, et al. Status of the follow-up X-ray telescope onboard the Einstein Probe satellite[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 2020: 885-893. |
76 | BASSO S, CIVITANI M, PARESCHI G, et al. Mirror module design of X-ray telescopes of eXTP mission[J]. Proceedings of SPIE, 2019, 11119: 1111904. |
77 | ZHANG S N, SANTANGELO A, FEROCI M, et al. The enhanced X-ray timing and polarimetry mission—eXTP[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(2): 29502. |
78 | SHEN Z X, YU J, MA B, et al. Current progress of X-ray multilayer telescope optics based on thermally slumping glass for eXTP mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018, 10699: 269-280. |
79 | SOFFITTA P, BARCONS X, BELLAZZINI R, et al. XIPE: The X-ray imaging polarimetry explorer[J]. Experimental Astronomy, 2013, 36(3): 523-567. |
80 | RAY P S, ARZOUMANIAN Z, BRANDT S, et al. STROBE-X: A probe-class mission for X-ray spectroscopy and timing on timescales from microseconds to years[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018: 249-268. |
81 | MUSHOTZKY R F, AIRD J, BARGER A J, et al. The advanced X-ray imaging satellite[DB/OL]. arXiv preprint: 1903.04083, 2019. |
82 | BAVDAZ M, WILLE E, AYRE M, et al. ATHENA X-ray optics development and accommodation[C]∥SPIE 11822, Optics for EUV, X-Ray, and Gamma-Ray Astronomy X, 2021: 32-46. |
83 | COLLON M J, VACANTI G, GUNTHER R, et al. Silicon pore optics for the ATHENA telescope[J]. Proceedings of SPIE, 2016, 9905: 990528. |
84 | JESSICA A, GASKIN, DOUGLAS A, et al. Lynx X-ray observatory: An overview[J]. Journal of Astronomical Telescopes Instruments and Systems, 2019, 5(2): 021001. |
85 | NASA Marshall Space Flight Center. Lynx X-ray observatory concept study report [EB/OL] [2021-11-01] (2021-12-20). . |
86 | SANTANGELO A, MADONIA R. Fifty years of X-ray astronomy: A look back and into the (near) future[J]. Astroparticle Physics, 2014, 53: 130-151. |
87 | CIVITANI M M, PARODI G, TOSO G, et al. Progress on high-resolution thin full monolithic shells made of glass for Lynx[C]∥SPIE Optical Engineering + Applications. Proc SPIE 11822, Optics for EUV, X-Ray, and Gamma-Ray Astronomy X, 11822: 243-257. |
88 | TENDULKAR M, LIU T N, KIRCHNER-HALL N, et al. Process development for adjustable X-ray mirrors[C]∥SPIE Optical Engineering + Applications. Proc SPIE 11822, Optics for EUV, X-Ray, and Gamma-Ray Astronomy X, 2021: 198-205. |
89 | 赵大春. 软X射线掠入射集光系统设计及加工技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016: 10-85. |
ZHAO D C. Study on design and processing technology of soft X-ray grazing incidence light collection system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016: 10-85 (in Chinese). | |
90 | 强鹏飞, 盛立志, 李林森, 等. X射线聚焦望远镜光学设计[J]. 物理学报, 2019, 68(16): 158-163. |
QIANG P F, SHENG L Z, LI L S, et al. Optical design of X-ray focusing telescope[J]. Acta Physica Sinica, 2019, 68(16): 158-163 (in Chinese). | |
91 | 王波, 杨彦佶, 王殿龙, 等. X射线聚焦镜的超精密制造[J]. 光学精密工程, 2021, 29(8): 1839-1846. |
WANG B, YANG Y J, WANG D L, et al. Ultra-precision manufacture of X-ray focusing mirror[J]. Optics and Precision Engineering, 2021, 29(8): 1839-1846 (in Chinese). | |
92 | 袁为民, 张臣, 陈勇, 等. 爱因斯坦探针: 探索变幻多姿的X射线宇宙[J]. 中国科学: 物理学 力学 天文学, 2018, 48(3): 6-25. |
YUAN W M, ZHANG C, CHEN Y, et al. Einstein probe: Exploring the ever-changing X-ray universe[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(3): 6-25 (in Chinese). | |
93 | 左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报, 2020, 69(3): 63-71. |
ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica, 2020, 69(3): 63-71 (in Chinese). | |
94 | 吴明轩. 基于全反射理论的微孔光学阵列设计方法[D]. 北京:北京空间机电研究所,2015: 2-25. |
WU M X. Design method of microporous optical array based on total reflection theory[D]. Beijing: Beijing Institute of space mechatronics, 2015: 2-25 (in Chinese). | |
95 | LOWE B G, HOLLAND A D, HUTCHINSON I B, et al. The swept charge device, a novel CCD-based EDX detector: First results[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1-2): 568-579. |
96 | 王绶琯, 周又元. X射线天体物理学[M]. 北京: 科学出版社, 1999: 76-112. |
WANG S G, ZHOU Y Y. X-ray astrophysics[M]. Beijing: Science Press, 1999: 76-112 (in Chinese). | |
97 | 徐延庭, 宫超林, 胡慧君, 等. 脉冲星MCP探测器设计与在轨验证[J]. 航天器工程, 2018, 27(5): 114-119. |
XU Y T, GONG C L, HU H J, et al. Design and in-orbit verification of MCP detector for pulsar[J]. Spacecraft Engineering, 2018, 27(5): 114-119 (in Chinese). | |
98 | 黄北举, 张赞, 张赞允, 等. 硅基光电子与微电子单片集成研究进展[J]. 微纳电子与智能制造, 2019, 1(3): 55-67. |
HUANG B J, ZHANG Z, ZHANG Z Y, et al. Research progress on monolithic integration of silicon based optoelectronics with microelectronics[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2019, 1(3): 55-67 (in Chinese). | |
99 | 王兴军, 苏昭棠, 周治平. 硅基光电子学的最新进展[J]. 中国科学: 物理学 力学 天文学, 2015, 45(1): 15-45. |
WANG X J, SU Z T, ZHOU Z P. Recent progress of silicon photonics[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(1): 15-45 (in Chinese). | |
100 | 薛佳琦, 赵晓帆, 崔苇苇, 等. 高速X射线SCD探测器数据获取系统设计[J]. 核电子学与探测技术, 2019, 39(3): 290-296. |
XUE J Q, ZHAO X F, CUI W W, et al. Design and research of data acquisition system for X-ray SCD detector[J]. Nuclear Electronics & Detection Technology, 2019, 39(3): 290-296 (in Chinese). | |
101 | 杨彦佶. CCD型X射线探测器性能研究[D]. 长春: 吉林大学, 2014: 4-30. |
YANG Y J. The study on the performance of X-ray CCDs[D]. Changchun: Jilin University, 2014: 4-30 (in Chinese). | |
102 | ROWAN D M, GHAZI Z, LUGO L, et al. A NICER view of spectral and profile evolution for three X-ray emitting millisecond pulsars[DB/OL]. arXiv preprint: 2001.11513, 2020. |
[1] | Wei ZHENG, Yusong WANG, Kun JIANG, Yidi WANG. Space experiments on X-ray pulsar navigation: Progress and prospects [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28843-028843. |
[2] | Kai XIONG, Chunling WEI, Liansheng LI, Peng ZHOU. Pulsar/inter-satellite LOS integrated navigation based on augmented QLEKF [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526232-526232. |
[3] | Guodong XU, Danlei ZHANG, Zhendong XU. Arrival time processing method of pulsar characteristic frequency signals [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526185-526185. |
[4] | Qingyong ZHOU, Linli YAN, Liansheng LI, Laiping FENG, Yongqiang SHI, Pengfei SUN, Liu FANG, Long WANG. On⁃orbit stability analysis of FXPT on XPNAV⁃1 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526610-526610. |
[5] | Minglei TONG, Mengna HAN, Tinggao YANG, Chengshi ZHAO, Xingzhi ZHU. Correcting frequency of a spaceborne atomic clock using X-ray observations of Crab pulsar [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526566-526566. |
[6] | Lizhi SHENG, Wei ZHENG, Tong SU, Dapeng ZHANG, Yidi WANG, Xianghui YANG, Neng XU, Zhize LI. Ground test bench for X-ray pulsar navigation dynamic simulation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526656-526656. |
[7] | Chengshi ZHAO, Yuping GAO, Minglei TONG, Xingzhi ZHU, Jintao LUO. Unity of pulsar-based ephemeris time-space reference systems for navigation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526580-526580. |
[8] | Jianyu SU, Haiyan FANG, Jingjing GAO, Liang ZHAO. Determination of optimal observation period for X-ray pulsar-based navigation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526597-526597. |
[9] | Junqiu YIN, Yunpeng LIU, Xiaobin TANG. Spacecraft positioning method based on pulsar-like X-ray beacon [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526596-526596. |
[10] | Kun JIANG, Wenhai JIAO, Xiaolong HAO, Ying LIU, Yidi WANG, Xinyuan ZHANG, Ji GUO. Scientific experiments and achievements of XPNAV-1 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526611-526611. |
[11] | Dawei HAN, Shijie ZHENG, Youli TUO, Mingyu GE, Liming SONG, Xinqiao LI, Xiangyang WEN, Shaolin XIONG. Orbit determination analysis using Crab observation data of GECAM mission [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526641-526641. |
[12] | Baoquan LI, Haitao LI, Yang CAO, Peng SANG, Yaning LIU, Daochun YU. Nested focusing X-ray telescope with lightweight and large photon collecting area [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526671-526671. |
[13] | Tinggao YANG, Yuping GAO, Minglei TONG, Bian LI, Chengshi ZHAO, Jintao LUO, Xingzhi ZHU, Fei WEI. Review on research progress of ensemble pulsar time-scale [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526443-526443. |
[14] | Jinsheng LIU, Bo WANG, Juan SONG, Wencong WANG, Jingjing LI, Zhenhua XU. Estimation of space radiation background of Wolter‑I X‑ray pulsar detector [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526599-526599. |
[15] | Liansheng LI, Zhiwu MEI, Jun XIE, Kun JIANG, Yongqiang SHI, Zhen CAO, Fuchang ZUO. A review of applications of X⁃ray focused optics in field of pulsar detection [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 528286-528286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341