Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (4): 628346-628346.doi: 10.7527/S1000-6893.2023.28346
• Special Topic: Vibration Identification and Suppression Technology of Aeroengine • Previous Articles Next Articles
Zhiyuan WU1, Linchuan ZHAO1, Ge YAN1, Haifeng HU2, Zhibo YANG3, Wenming ZHANG1()
Received:
2022-12-01
Revised:
2023-02-13
Accepted:
2023-05-04
Online:
2024-02-25
Published:
2023-05-06
Contact:
Wenming ZHANG
E-mail:wenmingz@sjtu.edu.cn
Supported by:
CLC Number:
Zhiyuan WU, Linchuan ZHAO, Ge YAN, Haifeng HU, Zhibo YANG, Wenming ZHANG. Vibration characteristics of blade tip in a shaft⁃disk⁃cracked⁃blade coupling system[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 628346-628346.
Table 1
Natural frequencies of coupling system without cracked blade
阶次 | 固有频率/Hz | 误差1/% | 误差2/% | 误差3/% | 振型描述 | |||
---|---|---|---|---|---|---|---|---|
本文方法 | 有限元模型 | 文献[ | 文献[ | |||||
1 | 117.43 | 117.38 | 117.40 | 0.04 | 0.03 | 扭转模态 | ||
2 | 132.89 | 132.92 | 132.90 | 129.30 | -0.02 | -0.01 | 2.78 | 俯仰模态 |
3 | 132.89 | 132.92 | 132.90 | 129.30 | -0.02 | -0.01 | 2.78 | 与第2阶模态正交 |
4 | 265.20 | 264.55 | 269.60 | 258.00 | 0.25 | -1.63 | 2.79 | 轮盘的摆动模态 |
5 | 265.20 | 264.55 | 269.60 | 258.00 | 0.25 | -1.63 | 2.79 | 与第4阶模态正交 |
6 | 364.58 | 373.02 | 364.70 | 361.30 | -2.26 | -0.03 | 0.91 | 叶片弯曲主导模态 |
7 | 365.27 | 373.72 | 365.40 | 364.70 | -2.26 | -0.04 | 0.16 | 叶片弯曲主导模态 |
8 | 365.27 | 373.72 | 365.40 | 368.00 | -2.26 | -0.04 | -0.74 | 与第7阶模态正交 |
9 | 370.59 | 379.14 | 370.70 | 372.00 | -2.26 | -0.03 | -0.38 | 叶片弯曲主导模态 |
10 | 1 037.87 | 1 030.70 | 1 026.90 | 0.70 | 1.07 | 靠近轴承1的轴段弯曲 | ||
11 | 1 037.87 | 1 030.70 | 1 026.90 | 0.70 | 1.07 | 与第10阶模态正交 | ||
12 | 1 856.89 | 1 824.80 | 1 839.10 | 1.76 | 0.97 | 靠近轴承2的轴段弯曲 | ||
13 | 1 856.89 | 1 824.80 | 1 839.10 | 1.76 | 0.97 | 与第12阶模态正交 |
Table 2
Natural frequencies of coupling system with cracked blade
阶次 | 本文方法/Hz | 有限元模型/Hz | 误差/% |
---|---|---|---|
1 | 117.42 | 117.38 | 0.03 |
2 | 132.89 | 132.92 | -0.02 |
3 | 132.89 | 132.92 | -0.02 |
4 | 265.20 | 264.55 | 0.25 |
5 | 265.20 | 264.55 | 0.25 |
6 | (358.02) | (368.38) | -2.81 |
7 | (364.83) | (373.27) | -2.26 |
8 | 365.27 | 373.72 | -2.26 |
9 | (369.72) | (378.37) | -2.29 |
10 | 1 037.87 | 1 030.70 | 0.70 |
11 | 1 037.87 | 1 030.70 | 0.70 |
12 | 1 856.89 | 1 824.80 | 1.76 |
13 | 1 856.89 | 1 824.80 | 1.76 |
1 | WANG W M, ZHANG X L, HU D F, et al. A novel none once per revolution blade tip timing based blade vibration parameters identification method[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1953-1968. |
2 | ZHANG X D, XIONG Y W, HUANG X, et al. Dynamic characteristics analysis of 3D blade tip clearance for turbine blades with typical cracks[J]. International Journal of Aerospace Engineering, 2022, 2022: 1-17. |
3 | ZENG J, CHEN K K, MA H, et al. Vibration response analysis of a cracked rotating compressor blade during Run-up process[J]. Mechanical Systems and Signal Processing, 2019, 118: 568-583. |
4 | CHEN Z S, SHENG H, XIA Y M, et al. A comprehensive review on blade tip timing-based health monitoring: status and future[J]. Mechanical Systems and Signal Processing, 2021, 149: 107330. |
5 | YANG L H, MAO Z, WU S M, et al. Steady-state coupling vibration analysis of shaft-disk-blade system with blade crack[J]. Nonlinear Dynamics, 2021, 105(1): 61-98. |
6 | CHIU Y J, HUANG S C. The influence of a cracked blade on rotor’s free vibration[J]. Journal of Vibration and Acoustics, 2008, 130(5): 1. |
7 | 刘美茹, 朱靖, 梁恩波, 等. 基于叶尖定时的航空发动机压气机叶片振动测量[J]. 航空动力学报, 2019, 34(9): 1895-1904. |
LIU M R, ZHU J, LIANG E B, et al. Vibration measurement on compressor rotor blades of aero-engine based on tip-timing[J]. Journal of Aerospace Power, 2019, 34(9): 1895-1904 (in Chinese). | |
8 | 刘美茹, 郜伟强, 范毅, 等. 叶尖定时技术在转子叶片故障排除中的应用[J]. 航空动力学报, 2022, 37(12): 2818-2829. |
LIU M R, GAO W Q, FAN Y, et al. Application of blade tip timing technology in rotor blade fault elimination[J]. Journal of Aerospace Power, 2022, 37(12): 2818-2829 (in Chinese). | |
9 | XU H L, CHEN Z S, XIONG Y P, et al. Nonlinear dynamic behaviors of rotated blades with small breathing cracks based on vibration power flow analysis[J]. Shock and Vibration, 2016, 2016: 1-11. |
10 | XIE J S, ZI Y Y, ZHANG M Q, et al. A novel vibration modeling method for a rotating blade with breathing cracks[J]. Science China Technological Sciences, 2019, 62(2): 333-348. |
11 | YANG L H, YANG Z S, MAO Z, et al. Dynamic characteristic analysis of rotating blade with transverse crack—Part I: Modeling, modification, and validation[J]. Journal of Vibration and Acoustics, 2021, 143(5): 051010. |
12 | LIU C, JIANG D X. Crack modeling of rotating blades with cracked hexahedral finite element method[J]. Mechanical Systems and Signal Processing, 2014, 46(2): 406-423. |
13 | ZHAO C G, ZENG J, MA H, et al. Dynamic analysis of cracked rotating blade using cracked beam element[J]. Results in Physics, 2020, 19: 103360. |
14 | KUANG J H, HUANG B W. The effect of blade crack on mode localization in rotating bladed disks[J]. Journal of Sound and Vibration, 1999, 227(1): 85-103. |
15 | HUANG B W, KUNG H K, KUANG J H. Stability in a twisted periodic blade system with cracks[J]. AIAA Journal, 2006, 44(7): 1436-1444. |
16 | HUANG B W. Effect of number of blades and distribution of cracks on vibration localization in a cracked pre-twisted blade system[J]. International Journal of Mechanical Sciences, 2006, 48(1): 1-10. |
17 | JUNG C, SAITO A, EPUREANU B I. Detection of cracks in mistuned bladed disks using reduced-order models and vibration data[J]. Journal of Vibration and Acoustics, 2012, 134(6): 061010. |
18 | MA H, LU Y, WU Z Y, et al. A new dynamic model of rotor-blade systems[J]. Journal of Sound and Vibration, 2015, 357: 168-194. |
19 | SHE H X, LI C F, TANG Q S, et al. The investigation of the coupled vibration in a flexible-disk blades system considering the influence of shaft bending vibration[J]. Mechanical Systems and Signal Processing, 2018, 111: 545-569. |
20 | MA H, YIN F L, WU Z Y, et al. Nonlinear vibration response analysis of a rotor-blade system with blade-tip rubbing[J]. Nonlinear Dynamics, 2016, 84(3): 1225-1258. |
21 | YANG T R, MA H, QIN Z Y, et al. Coupling vibration characteristics of the shaft-disk-drum rotor system with bolted joints[J]. Mechanical Systems and Signal Processing, 2022, 169: 108747. |
22 | 吴志渊, 闫寒, 吴林潮, 等. 旋转裂纹叶片-弹性轮盘耦合系统振动特性[J]. 航空学报, 2022, 43(9): 625442. |
WU Z Y, YAN H, WU L C, et al. Vibration characteristics of rotating cracked-blade-flexible-disk coupling system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625442 (in Chinese). | |
23 | ZHAO S N, ZHANG X N, ZHANG S G, et al. A unified modeling approach for rotating flexible shaft-disk systems with general boundary and coupling conditions[J]. International Journal of Mechanical Sciences, 2022, 218: 107073. |
24 | WU Z Y, YAN H, ZHAO L C, et al. Axial-bending coupling vibration characteristics of a rotating blade with breathing crack[J]. Mechanical Systems and Signal Processing, 2023, 182: 109547. |
25 | DADO M H F, ABUZEID O. Coupled transverse and axial vibratory behaviour of cracked beam with end mass and rotary inertia[J]. Journal of Sound and Vibration, 2003, 261(4): 675-696. |
26 | WU M C, HUANG S C. On the vibration of a cracked rotating blade[J]. Shock and Vibration, 1998, 5(5-6): 317-323. |
27 | HOU Y H, CAO S Q, KANG Y H, et al. Dynamics analysis of bending–torsional coupling characteristic frequencies in dual-rotor systems[J]. AIAA Journal, 2022, 60(10): 6020-6035. |
28 | MOHAMED M E, BONELLO P. The efficient inclusion of rotation-induced inertia effects in a shaft-blisk assembly model using zero-speed modes[J]. Journal of Sound and Vibration, 2020, 479: 115357. |
29 | WU Z Y, YAN H, ZHAO L C, et al. Influences of blade crack on the coupling characteristics in a bladed disk with elastic support[J]. Aerospace Science and Technology, 2023, 133: 108135. |
30 | SHE H X, LI C F. Analytical interpretation and numerical simulation on the dynamic coupling of a flexible cyclic blades-disk-shaft system[J]. Applied Mathematical Modelling, 2022, 112: 726-748. |
31 | CHEN S Y, YANG Y M, HU H F, et al. Blind interpolation for multi-frequency blade tip timing signals[J]. Mechanical Systems and Signal Processing, 2022, 172: 108946. |
[1] | ZHANG Zhe, WANG Hanping, JIN Wendong, ZHANG Baozhen, CHENG Mengwen. Fast analysis method of deflection efficiency for thrust axial-symmetric vectoring exhaust nozzle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 224429-224429. |
[2] | WANG Kelei, ZHOU Zhou, ZHU Xiaoping, GUO Jiahao, FAN Zhongyun. Reconstruction design of propeller induced flow-field based on aerodynamic loading distributions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 123118-123118. |
[3] | WANG Liangquan, XU Guohua, SHI Yongjie, XIA Runze. Influence of higher harmonic control on airload and acoustics of rotor blade-vortex interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(7): 520847-520847. |
[4] | TAN Jianfeng. Influence of helicopter rotor on tail rotor unsteady aerodynamic loads [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(10): 3228-3240. |
[5] | LIU Zhou, YANG Yunjun, ZHOU Weijiang, GONG Anlong. Study of Unsteady Separation Flow Around Airfoil at High Angle of Attack Using Hybrid RANS-LES Method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(2): 372-380. |
[6] | Song Xizhen;Zhou Sheng;Li Qiushi. Way of Improving Aerodynamic Load Coefficient of Transonic Axial Fan Rotor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(1): 12-20. |
[7] | DENG Li-dong;LI Tian;XUE Xiao-chun. CALCULATION METHOD ABOUT NONLINEAR FLIGHT LOADS OF AIRCRAFT [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2002, 23(4): 317-320. |
[8] | Li Zhaoguang. A STUDY ON FLIGHT LOADS FOR UNSYMMETRICAL POWER MANEUVER [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(1): 41-45. |
[9] | Hu Changrong. THE OPTIMIZATION OF LOAD EQUATION DURING AIRCRAFT FLIGHT LOAD MEASUREMNT [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(1): 102-105. |
[10] | Sun Jianhua;Qu Shihong. ASTUDY ON FLIGHT LOAD ESTIMATION OF AIRCRAFT STRUCTURAL COMPONENTS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(1): 106-108. |
[11] | SunJianhua;QuShihong. A STUDY ON A PARAMETRIC IDENTIFICATION METHOD OF FLIGHT LOAD [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(1): 109-112. |
[12] | Hu Changrong. THE OPTIMIZATION OF LOAD EQUATION DURING AIRCRAFT FLIGHT LOAD MEASUREMNT [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 1(1): 102-105. |
[13] | Sun Jianhua;Qu Shihong. ASTUDY ON FLIGHT LOAD ESTIMATION OF AIRCRAFT STRUCTURAL COMPONENTS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 1(1): 106-108. |
[14] | SunJianhua;QuShihong. A STUDY ON A PARAMETRIC IDENTIFICATION METHOD OF FLIGHT LOAD [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 1(1): 109-112. |
[15] | Wang Zhongyan. THE INFLUENCE OF AIRPLANE CONTROL SYSTEM PROPERTIES ON THE MANEUVER LOADS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(1): 27-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341