1 |
陆宇平, 何真. 变体飞行器控制系统综述[J]. 航空学报, 2009, 30(10): 1906-1911.
|
|
LU Y P, HE Z. A survey of morphing aircraft control systems[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1906-1911 (in Chinese).
|
2 |
CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246.
|
3 |
BARARINAO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877.
|
4 |
冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449.
|
|
RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449 (in Chinese).
|
5 |
PONS A, CIRAK F. Multi-axis nose-pointing-and-shooting in a biomimetic morphing-wing Aircraft[J]. Journal of Guidance, Control, and Dynamics, 2023, 46(3): 499-517.
|
6 |
AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682.
|
7 |
YAN B B, DAI P, LIU R F, et al. Adaptive super-twisting sliding mode control of variable sweep morphing aircraft[J]. Aerospace Science and Technology, 2019, 92: 198-210.
|
8 |
SNYDER M P, SANDERS B, EASTEP F E, et al. Vibration and flutter characteristics of a folding wing[J]. Journal of Aircraft, 2009, 46(3): 791-799.
|
9 |
SMITH S B, NELSON D W. Determination of the aerodynamic characteristics of the mission adaptive wing[J]. Journal of Aircraft, 1990, 27(11): 950-958.
|
10 |
CHEUNG K, CELLUCCI D, COPPLESTONE G, et al. Development of Mission Adaptive Digital Composite Aerostructure Technologies (MADCAT)[C]∥17th AIAA Aviation Technology, Integration, and Operations Conference. 2017: 4273.
|
11 |
张桢锴, 贾思嘉, 宋晨, 等. 柔性变弯度后缘机翼的风洞试验模型优化设计[J]. 航空学报, 2022, 43(3): 226071.
|
|
ZHANG Z K, JIA S J, SONG C, et al. Optimum design of wind tunnel test model for compliant morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 226071 (in Chinese).
|
12 |
梁帅, 杨林, 杨朝旭, 等. 基于Kalman滤波的变体飞行器T-S模糊控制[J]. 航空学报, 2020, 41(S2): 724274.
|
|
LIANG S, YANG L, YANG Z X, et al. Kalman filter based T-S fuzzy control for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724274 (in Chinese).
|
13 |
王晨, 杨洋, 沈星, 等. 用于变体飞行器的波纹板等效强度模型及其优化设计[J]. 航空学报, 2022, 43(6): 526146.
|
|
WANG C, YANG Y, SHEN X, et al. An equivalent strength model of corrugated panel and optimization design for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526146 (in Chinese).
|
14 |
于惠勇, 李华峰, 曾捷, 等. 可变弯度机翼后缘形态重构光纤监测技术[J]. 航空学报, 2020, 41(10): 223808.
|
|
YU H Y, LI H F, ZENG J, et al. Monitoring technique for shape reconstruction of variable camber trailing edge based on optical fiber sensors[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 223808 (in Chinese).
|
15 |
尹维龙, 石庆华, 田东奎. 变体后缘的索网传动机构设计与分析[J]. 航空学报, 2013, 34(8): 1824-1831.
|
|
YIN W L, SHI Q H, TIAN D K. Design and analysis of transmission mechanism with cable networks for morphing trailing-edge[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1824-1831 (in Chinese).
|
16 |
SAHU J, GRUENWALD B C, BURCHETT B T. Adaptive control validation using a MATLAB-based CFD/RBD coupled simulation[C]∥AIAA SCITECH 2023 Forum. 2023: 1171.
|
17 |
ERNST Z, DROSENDAHL M, ROBERTSON B E, et al. Development of a trajectory-centric CFD-RBD framework for advanced multidisciplinary/multiphysics simulation[C]∥ AIAA SCITECH 2022 Forum. 2022: 1793.
|
18 |
KAKIMAP B, HARGREAVES D M, OWEN J S. An investigation of plate-type windborne debris flight using coupled CFD-RBD models. Part I: model development and validation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 111: 95-103.
|
19 |
SAINI D, SHAFEI B. Flight characteristics of rod-shaped windborne debris objects in atmospheric boundary layer winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105073.
|
20 |
黄阳阳, 姜毅, 李玉龙, 等. 子母弹结构特征对分离特性影响分析[J]. 现代防御技术, 2021, 49(2): 35-42.
|
|
HUANG Y Y, JIANG Y, LI Y L, et al. Impact analysis of structure characteristics of cluster bombs on separation characteristics[J]. Modern Defense Technology, 2021, 49(2): 35-42 (in Chinese).
|
21 |
王巍, 刘君, 刘冰, 等. 火箭助推器从芯级飞行器动态分离过程的数值模拟[J]. 宇航学报, 2006, 27(4): 766-770.
|
|
WANG W, LIU J, LIU B, et al. Numerical simulation the process of the rocket booster separating form spaceship[J]. Journal of Astronautics, 2006, 27(4): 766-770 (in Chinese).
|
22 |
UDWADIA F E, KALABA R E. Analytical dynamics: a new approach[M]. Cambridge: Cambridge University Press, 1996: 84-85.
|
23 |
UDWADIA F E, PHAILAUNG P. Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics[J]. Proceedings of the Royal Society A, 2006, 462: 2097-2117.
|
24 |
张来平, 邓小刚, 张涵信. 动网格生成技术及非定常计算方法进展综述[J]. 力学进展, 2010, 40(4): 424-447.
|
|
ZHANG L P, DENG X G, ZHANG H X. Reviews of moving grid generation techniques and numerical methods for unsteady flow[J]. Advances in Mechanics, 2010, 40(4): 424-447 (in Chinese).
|