Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (S2): 729306-729306.doi: 10.7527/S1000-6893.2023.29306
• Icing and Anti/De-icing • Previous Articles Next Articles
Yongjie HUANG1,2, Zhangsong NI1(), Jie PAN1
Received:
2023-07-11
Revised:
2023-07-16
Accepted:
2023-07-25
Online:
2023-08-07
Published:
2023-08-04
Contact:
Zhangsong NI
E-mail:nzscczx@163.com
Supported by:
CLC Number:
Yongjie HUANG, Zhangsong NI, Jie PAN. Simulation of electro-impulse de-icing considering ice fracture and interface debonding[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729306-729306.
1 | 曾天翔. 飞机事故及其原因统计分析[J]. 航空标准化与质量, 1998(6): 37-43. |
ZENG T X. Statistical analysis of aircraft accidents and their causes[J]. Aeronautic Standardization & Quality, 1998(6): 37-43 (in Chinese). | |
2 | WEI Y, XU H J, XUE Y, et al. Quantitative assessment and visualization of flight risk induced by coupled multi-factor under icing conditions[J]. Chinese Journal of Aeronautics, 2020, 33(8): 2146-2161. |
3 | GORAJ Z. An overview of the deicing and anti-icing technologies with prospects for the future[C]∥Proceedings of the 24th international congress of the aeronautical sciences. Yokohama: Warsaw University of Technology, 2004: 1-22. |
4 | 唐超, 谢文俊, 袁培毓, 等. 翼面前缘共形电热除冰功能结构开发与验证[J]. 航空学报, 2023, 44(12): 331-341. |
TANG C, XIE W J, YUAN P Y, et al. Development and verification of a conformal electrothermal deicing functional structure for leading edge of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 331-341 (in Chinese). | |
5 | 刘晓林, 朱彦曈, 王泽, 等. 飞行器仿生防冰涂层技术现状与趋势[J]. 航空学报, 2022, 43(10): 527331. |
LIU X L, ZHU Y T, WANG Z, et al. Research progress and development trend of bio-inspired anti-icing coatings for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527331 (in Chinese). | |
6 | POTAPCZUK M G. Aircraft icing research at NASA Glenn research center[J]. Journal of Aerospace Engineering, 2013, 26(2): 260-276. |
7 | 李清英, 朱春玲, 白天. 电脉冲除冰系统除冰激励的简化与影响因素[J]. 航空学报, 2012, 33(8): 1384-1393. |
LI Q Y, ZHU C L, BAI T. Simplification of de-icing excitation and influential factors of the electro-impulse de-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1384-1393 (in Chinese). | |
8 | GUO F, CHANG S N. Design test of electro- impulse de-icing system of an aircraft[C]∥2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC). Piscataway: IEEE Press, 2011: 3918-3921. |
9 | 董文俊, 张永杰, 赵宾宾. 飞机电脉冲除冰技术研究进展[J]. 山东工业技术, 2015(16): 185-186. |
DONG W J, ZHANG Y J, ZHAO B B. Research progress of aircraft electrical pulse deicing technology[J]. Shandong Industrial Technology, 2015(16): 185-186 (in Chinese). | |
10 | LI Q Y, ZHU C L, BAI T A. Numerical simulation and experimental verification of the electro-impulse de-icing system[C]∥Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2012. |
11 | ZUMWALT G, FRIEDBERG R. Designing an electro-impulse de-icing system[C]∥Proceedings of the 24th Aerospace Sciences Meeting. 1986. |
12 | AL-KHALIL K. Thermo-mechanical expulsive deicing system-TMEDS[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007. |
13 | 景向嵘, 程盼, 罗振兵, 等. 电弧放电激励器破除冰特性及裂纹扩展规律[J]. 航空学报, 2022, 43(): 207-216. |
JING X R, CHENG P, LUO Z B, et al. Ice breaking characteristics and crack propagation law of arc discharge plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(Sup 2): 207-216 (in Chinese). | |
14 | KANDAGAL S B, VENKATRAMAN K. Piezo-actuated vibratory deicing of a flat plate[C]∥Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2005. |
15 | PALACIOS J L. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades[D]. Stadtkolich: The Pennsylvania State University, 2008. |
16 | KHATKHATE A, SCAVUZZO R, CHU M. A finite element study of the EIDI system[C]∥Proceedings of the 26th Aerospace Sciences Meeting. 1988. |
17 | LABEAS G N, DIAMANTAKOS I D, SUNARIC M M. Simulation of the electroimpulse de-icing process of aircraft wings[J]. Journal of Aircraft, 2006, 43(6): 1876-1885. |
18 | 张永杰, 董文俊, 王斌团, 等. 电脉冲除冰仿真冰层松脱准则研究[J]. 计算机工程与应用, 2012, 48(3): 232-233, 245. |
ZHANG Y J, DONG W J, WANG B T, et al. Study on de-icing criterion of electro-impulse de-icing simulation[J]. Computer Engineering and Applications, 2012, 48(3): 232-233, 245 (in Chinese). | |
19 | 崔哲. 脉冲参数对机翼电脉冲除冰效果影响的仿真研究[D]. 武汉: 华中科技大学, 2020: 50-86. |
CUI Z. Simulation study on the influence of pulse parameters on the wing electrical pulse de-icing effect[D]. Wuhan: Huazhong University of Science and Technology, 2020: 50-86 (in Chinese). | |
20 | 王洋洋. 微功耗飞机电脉冲除冰系统理论与实验研究[D]. 重庆: 重庆大学, 2020: 34-74. |
WANG Y Y. Theoretical and experimental research of the electro-impulse de-icing system for aircraft[D]. Chongqing: Chongqing University, 2020: 34-74 (in Chinese) . | |
21 | HUANG Y J, YI X, LIU Q L, et al. Simulation of electro-impulse de-icing process based on an improved ice shedding criterion[C]∥China Aeronautical Science and Technology Youth Science Forum. Singapore: Springer, 2023: 623-634. |
22 | SONG Y, LI S F, ZHANG S. Peridynamic modeling and simulation of thermo-mechanical de-icing process with modified ice failure criterion[J]. Defence Technology, 2021, 17(1): 15-35. |
23 | SYSTèMES D. ABAQUS Documentation (Version 6.13)[EB/OL]. Providence, RI, 2013. |
24 | REICH A. Ice property/structure variations across the glaze/rime transition[C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. 1992. |
25 | ANDREWS E H, LOCKINGTON N A. The cohesive and adhesive strength of ice[J]. Journal of Materials Science, 1983, 18(5): 1455-1465. |
26 | SOMMERWERK H, LUPLOW T, HORST P. Numerical simulation and validation of electro-impulse de-icing on a leading edge structure[J]. Theoretical and Applied Fracture Mechanics, 2020, 105: 102392. |
27 | ZHANG Y J, LIANG K, LAN H, et al. Modelling electro-impulse de-icing process in leading edge structure and impact fatigue life prediction of rivet holes in critical areas[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(5): 1117-1131. |
28 | ENDRES M, SOMMERWERK H, MENDIG C, et al. Experimental study of two electro-mechanical de-icing systems applied on a wing section tested in an icing wind tunnel[J]. CEAS Aeronautical Journal, 2017, 8(3): 429-439. |
29 | GOODMAN D J, TABOR D. Fracture toughness of ice: a preliminary account of some new experiments[J]. Journal of Glaciology, 1978, 21(85): 651-660. |
30 | PERVIER M A, HAMMOND D W. Measurement of the fracture energy in mode I of atmospheric ice accreted on different materials using a blister test[J]. Engineering Fracture Mechanics, 2019, 214: 223-232. |
[1] | Long WANG, Yuexun LIU, Shengchuan WU, Chuantao HOU, Fengtao ZHANG. In⁃situ X⁃ray tomography based characterization of propellant damage evolution [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 427022-427022. |
[2] | WANG Qiang, MA Zhisai, ZHANG Xin, LIU Yan, DING Qian. Dynamic characteristic analysis for a folding fin with freeplay nonlinearities based on mode synthesis method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 223507-223507. |
[3] | DONG Lihong, GUO Wei, WANG Haidou, XING Zhiguo, FENG Fuzhou, WANG Bozheng, GAO Zhifeng. Inspection of interface debonding in thermal barrier coatings using pulsed thermography [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(8): 422895-422895. |
[4] | DU Maohua, CHENG Zheng, WANG Shensong, ZHANG Yanfei. Effects of damage evolution on simulation results of high speed machining of Ti6Al4V [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(7): 422787-422787. |
[5] | YU Jiaquan, XU Jinsheng, CHEN Xiong, ZHOU Changsheng, JIA Deng, LI Hongwen. Rate-dependent property of propellant and inhibitor interface debonding [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(12): 3861-3867. |
[6] | ZHU Shuai, YANG He, GUO Lianggang, DI Weijia, FAN Yu. Simulation of Microstructure Evolution During the Whole Process of Radial-axial Rolling of TA15 Titanium Alloy Ring [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(11): 3145-3155. |
[7] | HE Erming, HU Yaqi, ZHANG Zhao, ZHAO Zhibin. 3-D Laminated Model and Dynamic Response Analysis of FGM Panels in Thermal-acoustic Environments [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(6): 1293-1300. |
[8] | LI Qingying, ZHU Chunling, BAI Tian. Simplification of De-icing Excitation and Influential Factors of the Electro-impulse De-icing System [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(8): 1384-1393. |
[9] | WU Cunli, DUAN Shihui, LI Xinxiang. Buckling Investigation of Composite Corrugated Panel Subject to Shear Loads [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(8): 1453-1460. |
[10] | Yu Qingmin;Yue Zhufeng. Finite Element Analysis on Void Nucleation and Growth Around Inclusion in Nickel-based Single Crystal Superalloys [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(1): 179-185. |
[11] | Wu Cunli;Duan Shihui;Sun Xiasheng. Technique for Calculation of Composite Corrugated Plate Stiffness and Its Application in Structure Finite Element Analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 30(6): 1570-1575. |
[12] | YANG Yong;KE Ying-lin;DONG Hui-yue. Finite Element Simulation of High-Speed Cutting [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(3): 531-535. |
[13] | XU Yuan-ming;GONG Yao-nan. APPLICATION OF INTELLIGENT METHOD FOR FINITE ELEMENT MODELING OF AERONAUTICAL STRUCTURE [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2001, 22(3): 207-211. |
[14] | Feng Wenxian;Chen Xin. UPDATING DESIGN PARAMETERS OF FINITE ELEMENT MODEL BY USING TEST COMPLEX MODAL DATA [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1999, 20(1): 11-16. |
[15] | Chen Guo-ping;Zhu De-mao. A SUPER-ELEMENT METHOD FOR VIBRATION CHARACTERISTIC ANALYSIS OF STRUCTURES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1992, 13(9): 465-471. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 265
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341