[1] Sui Y T, Yang X G. Interface debond analysis and detection method in SRM[J]. Winged Missiles Journal, 2001(1):43-46(in Chinese).隋玉堂,杨兴根.火箭发动机界面脱粘分析及检测新方法[J].飞航导弹, 2001(1):43-46.
[2] Yin H L, Wang Q H. Factors of influencing the bond characteristics at interface[J]. Journal of Solid Rocket Technology, 1998, 21(3):40-46(in Chinese).尹华丽,王清和.界面粘接性能的影响因素[J].固体火箭技术, 1998, 21(3):40-46.
[3] He G Q, Xiao Y M, Chen H, et al. Experiment on the factors affecting the debond propagation in solid rocket motors[J]. Journal of Solid Rocket Technology, 1998, 21(1):16-19(in Chinese).何国强,肖育民,陈宏,等.装药燃烧增压过程中脱粘扩展条件实验分析[J].固体火箭技术, 1998, 21(1):16-19.
[4] Xing Y G, Wang L B, Dong K H, et al. Factors influence propagation of debond in burning propellant[J]. Journal of Propulsion Technology, 2001, 22(1):77-80(in Chinese).邢耀国,王立波,董可海,等.燃烧条件下影响推进剂脱粘面扩展的因素[J].推进技术, 2001, 22(1):77-80.
[5] Meng S Y, Tang G J, Lei Y J. Stability analysis of the interfacial debonded crack between propellant and liner of solid rocket motor grains[J]. Journal of Solid Rocket Technology, 2004, 27(1):46-49(in Chinese).蒙上阳,唐国金,雷勇军.固体发动机包覆层与推进剂界面脱粘裂纹稳定性分析[J].固体火箭技术, 2004, 27(1):46-49.
[6] Yuan D C, Lei Y J, Tang G J, et al. Analysis of the interfacial crack in debonded layer of long term storage solid motor grain[J]. Journal of National University of Defense Technology, 2006, 28(3):19-23(in Chinese).袁端才,雷勇军,唐国金,等.长期贮存的固体发动机药柱脱粘界面裂纹分析[J].国防科技大学学报, 2006, 28(3):19-23.
[7] Zhou Q C, Ju Y T, Wei Z, et al. Cohesive zone modeling of propellant and insulation interface debonding[J]. The Journal of Adhesion, 2014, 90(3):230-251.
[8] Niu R M, Zhou Q C, Chen X, et al. Experimental and numerical analysis of mode Ⅱ fracture between propellant and insulation[J]. International Journal of Adhesion and Adhesives, 2014, 52:1-10.
[9] ISO 15024:2001(E). Fibre-reinforced plastic composites-determination of mode I interlaminar fracture toughness, GIc, for unidirectionally reinforced materials[S]. Switzerland:The International Orgnization for Standardization, 2001.
[10] Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2):100-104.
[11] Needleman A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3):525-531.
[12] Jin Z H, Sun C T. Cohesive zone modeling of interface fracture in elastic bi-materials[J]. Engineering Fracture Mechanics, 2005, 72(12):1805-1817.
[13] Yao Y, Huang Z X. A surface-energy equivalent cohesive crack model based on atomic cohesive force[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1796-1801(in Chinese).姚寅,黄再兴.基于原子内聚力与表面能等效的内聚裂纹模型[J].航空学报, 2010, 31(9):1796-1801.
[14] Li B, Li Y Z, Hu B H. A new interfacial element and finite element model for composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1370-1378(in Chinese).李彪,李亚智,胡博海.一种层压复合材料组合界面单元及有限元模型[J].航空学报, 2013, 34(6):1370-1378.
[15] Marzi S, Hesebeck O, Brede M, et al. A rate-dependent cohesive zone model for adhesively bonded joints loaded in mode I[J]. Journal of Adhesion Science and Technology, 2009, 23(6):881-898.
[16] Makhecha D P, Kapania R K, Johnson E R, et al. Rate-dependent cohesive zone modeling of unstable crack growth in an epoxy adhesive[J]. Mechanics of Advanced Materials and Structures, 2009, 16(1):12-19.
[17] Xu C, Siegmund T, Ramani K. Rate-dependent crack growth in adhesives:I. Modeling approach[J]. International Journal of Adhesion and Adhesives, 2003, 23(1):9-13.
[18] Xu C, Siegmund T, Ramani K. Rate-dependent crack growth in adhesives Ⅱ. Experiments and analysis[J]. International Journal of Adhesion and Adhesives, 2003, 23(1):15-22.
[19] Needleman A. An analysis of decohesion along an imperfect interface[J]. International Journal of Fracture, 1990, 42(1):21-40.
[20] Hooke R, Jeeves T A. "Direct search" solution of numerical and statistical problems[J]. Journal of the ACM (JACM), 1961, 8(2):212-229. |