ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (8): 327266-327266.doi: 10.7527/S1000-6893.2022.27266
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Huixia ZHANG1, Yan LIANG1(), Chaoxiong MA1, Mian WANG1, Dianfeng QIAO2
Received:
2022-04-11
Revised:
2022-05-11
Accepted:
2022-06-20
Online:
2023-04-25
Published:
2022-06-27
Contact:
Yan LIANG
E-mail:liangyan@nwpu.edu.cn
Supported by:
CLC Number:
Huixia ZHANG, Yan LIANG, Chaoxiong MA, Mian WANG, Dianfeng QIAO. Comprehensive recognization of aerial combat target cluster type driven by data and knowledge[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 327266-327266.
Table 1
Bayesian network node state space
节点 | 状态空间 |
---|---|
速度 | 小,中,大 |
高度 | 低,中,高 |
机动模式 | 盘旋机动,S形机动,爬升/俯冲机动,无明显机动 |
任务飞行方向 | 高价值目标,通信目标,无明显目标 |
距离变化率 | 靠近,无明显变化,远离 |
集群成员比例 | 战斗机,干扰机,预警机 |
集群队形 | “8”字型,菱形,一字型 |
雷达工作模式 | UHF波,L波,S波,X波,Ku波 |
集群编队类型 运动特性 任务特性 | 预警编队,扫荡编队,压制编队 高空盘旋,低空搜索,定高巡航 指挥控制,快速打击,释放干扰 |
集群结构特性 | 预警编队结构,战斗编队结构,干扰编队结构 |
电磁特性 | 高频段,低频段,中频段 |
集群编队类型 | 预警编队,扫荡编队,压制编队 |
Table 2
Characteristics of cluster formation
集群类型 | 特性描述 |
---|---|
预警编队 | 运动特性:预警机在执行侦察和预警任务时所处的高度较高 任务特性:对应的任务主要是监测和预警,其对我方高价值目标没有攻击性,飞行方向不具有目的性,一般处于盘旋或是一定区域缓慢飞行,接近速率较小 机动特性:通常当目标执行侦查、巡逻任务时常采用环形飞行。当执行侦察任务时,敌方预警机或侦查机可以对环形区域进行信息探测和采集,环形机动动作航迹,更符合预警机编队机动行为 集群占比:集群内有单个成员为预警机的置信度大于某一阈值,其它成员的机型置信度均表现为战斗机,则该群为预警机占主导,且预警机数量越多或置信度越大,预警集群占比越大 |
扫荡编队 | 运动特性:战斗机编队速度较大,快速实现空间占位与扫荡搜索,一方面提高导弹的初速,使得飞机能够在保证打击成功的前提下获得更大的安全距离,同时可以提高攻击的突然性以及导弹的拦截难度 任务特性:其对我方高价值目标(军师指挥所、导弹阵地等)有较强的攻击性,其对高价值目的地的接近速率会更快,飞行方向会更倾向军师指挥所、导弹阵地等 机动模式:主要通过改变己方和敌方的高度差,从而获取高度优势,常用于攻击比自己高度高的目标,爬升机动动作航迹,更符合扫荡编队的机动行为 集群占比:集群内有单个成员为战斗机的置信度大于某一阈值,其它成员的机型置信度超过总数的规定阈值,则编队更倾向于扫荡编队,该群为战斗机占主导 |
压制编队 | 任务特性:目的地明确主要目的地一般是雷达所或是军师指挥中心,在带状目的地接近速率较大 机动特性:S形机动是一种具有周期性的机动动作,其垂直高度基本不改变,在水平面内进行机动,这种机动通常在电子干扰或巡逻时采用,S形机动、无俯冲或是其他攻击性的机动,更符合压制编队集群的机动类型 集群占比:集群内有单个成员为电子干扰机的置信度大于某一阈值,数量超过阈值,其它成员的机型置信度均表现为战斗机或是未知,该集群更倾向于干扰机占主导,表现为压制编队 |
1 | 祝学军, 赵长见, 梁卓, 等. OODA智能赋能技术发展思考[J]. 航空学报, 2021, 42(4): 524332. |
ZHU X J, ZHAO C J, LIANG Z, et al. Thoughts on technology development of OODA empowered with AI[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524332 (in Chinese). | |
2 | 孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799. |
SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525799 (in Chinese). | |
3 | PURSER J L. Multi-domain operations and information warfare in the European theater[J]. Military Review, 2020, 100(6): 58-65. |
4 | 李保雪. 舰艇编队基本作战样式浅析[J]. 中国新通信, 2017, 19(17): 163-164. |
LI B X. Analysis on the basic combat style of warship formation[J]. China New Telecommunications, 2017, 19(17): 163-164 (in Chinese). | |
5 | XU D K, TIAN Y J. A comprehensive survey of clustering algorithms[J]. Annals of Data Science, 2015, 2(2): 165-193. |
6 | XIE J Y, JIANG S, XIE W X, et al. An efficient global K-means clustering algorithm[J]. Journal of Computers, 2011, 6(2): 271-279. |
7 | LIANG Z. Delta-density based clustering with a divide-and-conquer strategy: 3DC clustering[J]. Pattern Recognition Letters, 2016, 73: 52-59. |
8 | RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. |
9 | JIANG J H, ZHOU W, WANG L M, et al. HaloDPC: An improved recognition method on halo node for density peak clustering algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(8): 1950012. |
10 | JIANG J H. A novel density peaks clustering algorithm based on K[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 523: 702-713. |
11 | CHEN X J. Research on sea battlefield data fusion method based on D-S evidential theory and event net[J]. DEStech Transactions on Computer Science and Engineering, 2018: 625-631. |
12 | 孙宇翔, 黄孝鹏, 周献中, 等. 基于知识的海战场态势评估辅助决策系统构建[J]. 指挥信息系统与技术, 2020, 11(4): 15-20. |
SUN Y X, HUANG X P, ZHOU X Z, et al. Construction of knowledge-based situation assessment and assistant decision-making system for sea battlefield[J]. Command Information System and Technology, 2020, 11(4): 15-20 (in Chinese). | |
13 | AZAREWICZ J, FALA G, HEITHECKER C. Template-based multi-agent plan recognition for tactical situation assessment[C]∥ The Fifth Conference on Artificial Intelligence Applications. Piscataway: IEEE Press, 1989: 247-254. |
14 | 柴慧敏, 王宝树. 基于分层贝叶斯网络的计划识别方法[J]. 系统工程与电子技术, 2008, 30(5): 964-967. |
CHAI H M, WANG B S. Method for plan recognition based on hierarchical Bayesian networks[J]. Systems Engineering and Electronics, 2008, 30(5): 964-967 (in Chinese). | |
15 | XU L X, QIAO D F, LIANG Y, et al. A novel DBN-based intention inference algorithm for warship air combat[C]∥ 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference. Piscataway: IEEE Press, 2020: 916-921. |
16 | MEI W, LIU L, DONG J. The integrated sigma-max system and its application in target recognition[J]. Information Sciences, 2021, 555: 198-214. |
17 | 刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 726908. |
LIU L, LIU D W, WANG X G, et al. Development status and outlook of UAV clusters and anti-UAV clusters[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726908 (in Chinese). | |
18 | 陈士涛, 李大喜, 孙鹏, 等. 美军智能无人机集群作战样式及影响分析[J]. 中国电子科学研究院学报, 2021, 16(11): 1113-1118. |
CHEN S T, LI D X, SUN P, et al. Analysis on the development and influence of intelligent unmanned aerial vehicle cluster in US army[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(11): 1113-1118 (in Chinese). | |
19 | LIU W F. Structure modeling and estimation of multiple resolvable group targets via graph theory and multi-Bernoulli filter[J]. Automatica, 2018, 89: 274-289. |
20 | LIU S, LIANG Y, XU L F, et al. EM-based extended object tracking without a priori extension evolution model[J]. Signal Processing, 2021, 188: 108181. |
21 | 乔殿峰, 梁彦, 马超雄, 等. 多域作战下的群目标意图识别与预测[J]. 系统工程与电子技术, 2022: 44(11): 3403-3412. |
QIAO D F, LIANG Y, MA C X, et al. Recognition and prediction of group target intention in multi-domain operations[J/OL]. Systems Engineering and Electronics, 2022: 44(11): 3403-3412 (in Chinese). | |
22 | 胡利平, 梁晓龙, 何吕龙, 等. 基于情景分析的航空集群决策规则库构建方法[J]. 航空学报, 2020, 41(S1): 723737. |
HU L P, LIANG X L, HE L L, et al. Construction method of aviation swarm decision rule base based on scenario analysis[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723737 (in Chinese). | |
23 | 王书敏. 体系作战运筹分析[M]. 北京: 军事科学出版社, 2018: 639-399. |
WANG S M. Operations analysis on system-of-systems combat[M]. Beijing: Military Science Publishing House, 2018: 639-399 (in Chinese). | |
24 | HE J, WANG Y D, LIANG Y, et al. Learning-based airborne sensor task assignment in unknown dynamic environments[J]. Engineering Applications of Artificial Intelligence, 2022, 111: 104747. |
25 | 王莹. 用频装备面临的电磁环境量化方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013: 15-18. |
WANG Y. Study on quantitative methods of electromagnetic environment around electronic equipments[D]. Harbin: Harbin Engineering University, 2013: 15-18 (in Chinese). | |
26 | Wu Y, Du Y J, Zhang Y K. Evaluation of region electromagnetic environment complexity based on propagation model[J]. Journal of Computational Information Systems, 2014, 14(10): 5987-5994. |
27 | MEI W, SHAN G, WANG Y F. A second-order uncertainty model for target classification using kinematic data[J]. Information Fusion, 2011, 12(2): 105-110. |
28 | ZHANG D Z, LEE K, LEE I. Hierarchical trajectory clustering for spatio-temporal periodic pattern mining[J]. Expert Systems With Applications, 2018, 92: 1-11. |
29 | 万昌豪, 刘志国, 唐圣金, 等. 基于不完美先验信息的随机系数回归模型剩余寿命预测方法[J]. 北京航空航天大学学报, 2021, 47(12): 2542-2551. |
WAN C H, LIU Z G, TANG S J, et al. Remaining useful life prediction method based on random coefficient regression model with imperfect prior information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2542-2551 (in Chinese). | |
30 | 叶思懋. 融合先验的贝叶斯网络结构学习及其在智能决策中的应用[D]. 西安: 西北工业大学, 2018: 10-25. |
YE S M. Learning Bayesian network structure with priors and the application to intelligent decision[D]. Xi’an: Northwestern Polytechnical University, 2018: 10-25 (in Chinese). | |
31 | FORTIN B, HACHOUR S, DELMOTTE F. Multi-target PHD tracking and classification using imprecise likelihoods[J]. International Journal of Approximate Reasoning, 2017, 90: 17-36. |
[1] | Wenbin YANG, Yuebin WANG, Dan LI, Jianqiu ZHANG. A moving target detector with coherent integration of Bayesian-inferred motion trajectories [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 326823-326823. |
[2] | YU Tianxiang, ZHUANG Xinchen, SONG Bifeng, SUN Zhongchao. Integrated wear life prediction method of multiple joints in an aircraft linkage mechanism [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 625113-625113. |
[3] | CHANG Siyuan, BAI Xiaozheng, LIU Jun. A two-dimensional shock wave pattern recognition algorithm based on cluster analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(8): 123626-123626. |
[4] | ZHANG Weijun, ZHONG Sheng, WANG Jianhui. Airborne target tracking based on spatio-temporal saliency modeling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 323388-323388. |
[5] | Liu Xiaodong;Shen Zhengjin. STATISTICAL ANALYSIS OF MULTIPARAMETER FLIGHT DATA AND DETERMINATION OF FATIGUE LOAD STATES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(1): 36-40. |
[6] | Liu Xiaodong;Shen Zhengjin. STATISTICAL ANALYSIS OF MULTIPARAMETER FLIGHT DATA AND DETERMINATION OF FATIGUE LOAD STATES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 1(1): 36-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341