1 |
TAO W, CAO Y L, YANG J X. Analysis of the influence of blade’s machining error on aerodynamic performance of impeller based on NUMECA[J]. Procedia CIRP, 2015, 27: 155-162.
|
2 |
曹玉杰. 复杂曲面薄壁件五轴加工变形预测技术研究[D]. 大连: 大连理工大学, 2014: 40-46.
|
|
CAO Y J. Research on deformation prediction of five-axis machining thin-walled complex surface[D]. Dalian: Dalian University of Technology, 2014: 40-46 (in Chinese).
|
3 |
黄泽华, 李建勇, 樊文刚, 等. 复杂曲面薄壁叶片点铣加工弹性变形预测[J]. 西安交通大学学报, 2012, 46(5): 67-72.
|
|
HUANG Z H, LI J Y, FAN W G, et al. Deformation prediction of thin-walled vane with complex surface in ball end milling[J]. Journal of Xi’an Jiaotong University, 2012, 46(5): 67-72 (in Chinese).
|
4 |
蔡永林, 林立, 黄泽华. 薄壁叶片加工误差分析与预测[J]. 北京交通大学学报, 2012, 36(1): 104-107.
|
|
CAI Y L, LIN L, HUANG Z H. Error analysis and prediction of manufacturing for thin-walled blade[J]. Journal of Beijing Jiaotong University, 2012, 36(1): 104-107 (in Chinese).
|
5 |
LI Z L, TUYSUZ O, ZHU L M, et al. Surface form error prediction in five-axis flank milling of thin-walled parts[J]. International Journal of Machine Tools and Manufacture, 2018, 128: 21-32.
|
6 |
HOU Y H, ZHANG D H, MEI J W, et al. Geometric modelling of thin-walled blade based on compensation method of machining error and design intent[J]. Journal of Manufacturing Processes, 2019, 44: 327-336
|
7 |
ALTINTAS Y, TUYSUZ O, HABIBI M, et al. Virtual compensation of deflection errors in ball end milling of flexible blades[J]. CIRP Annals, 2018, 67: 365-368
|
8 |
HUANG T, ZHANG X M, DING H. Tool orientation optimization for reduction of vibration and deformation in ball-end milling of thin-walled impeller blades[J]. Procedia CIRP, 2017, 58: 210-215
|
9 |
WAN X J, ZHANG Y. A novel approach to fixture layout optimization on maximizing dynamic machinability[J]. International Journal of Machine Tools and Manufacture, 2013, 70: 32-44.
|
10 |
DOU J P, WANG X S, WANG L. Machining fixture layout optimization under dynamic conditions based on evolutionary techniques[J]. International Journal of Production Research, 2012, 50: 4294-4315.
|
11 |
王仲奇, 李诚, 杨勃, 等. 基于花授粉算法的曲面薄壁件定位布局优化[J]. 中国机械工程, 2017, 28(18): 2231-2236.
|
|
WANG Z Q, LI C, YANG B, et al. Fixture locating layout optimization of curved thin-walled parts based on FDA[J]. China Mechanical Engineering, 2017, 28(18): 2231-2236 (in Chinese).
|
12 |
XING Y F. Fixture layout design of sheet metal parts based on global optimization algorithms[J]. Journal of Manufacturing Science and Engineering, 2017, 139(10): 101004.
|
13 |
LI X N, ZHAO Z H. Location layout design of aircraft parts assembly based on MSVR[J]. Chinese Journal of Aeronautics, 2020, 33(5): 1532-1540.
|
14 |
秦国华, 赵旭亮, 吴竹溪. 基于神经网络与遗传算法的薄壁件多重装夹布局优化[J]. 机械工程学报, 2015, 51(1): 203-212.
|
|
QIN G H, ZHAO X L, WU Z X. Optimization of multi-fixturing layout for thin-walled workpiece based on neural network and genetic algorithm[J]. Journal of Mechanical Engineering, 2015, 51(1): 203-212 (in Chinese).
|
15 |
WANG Z Q, YANG B, KANG Y G, et al. Development of a prediction model based on RBF neural network for sheet metal fixture locating layout design and optimization[J]. Computational Intelligence and Neuroscience, 2016, 1687: 5265-5273.
|
16 |
杨元, 王仲奇, 杨勃, 等. 基于SVR的航空薄壁件夹具布局优化预测模型[J]. 计算机集成制造系统, 2017, 23(6): 1302-1309.
|
|
YANG Y, WANG Z Q, YANG B, et al. Prediction model for aeronautical thin-walled part fixture layout optimization based on SVR[J]. Computer Integrated Manufacturing Systems, 2017, 23(6): 1302-1309 (in Chinese).
|
17 |
YANG B, WANG Z Q, YANG Y, et al. Optimum fixture locating layout for sheet metal part by integrating kriging with cuckoo search algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1-4): 327-340.
|
18 |
MA J J, ZHANG D H, WU B H, et al. Vibration suppression of thin-walled workpiece machining considering external damping properties based on magnetorheological fluids flexible fixture[J]. Chinese Journal of Aeronautics, 2016, 29(4): 1074-1083.
|
19 |
FEI J X, LIN B, YAN S, et al. Chatter mitigation using moving damper[J]. Journal of Sound & Vibration, 2017, 410: 49-63.
|
20 |
LIU C, SUN J, LI Y, et al. Investigation on the milling performance of titanium alloy thin-walled part with air jet assistance[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95: 2865-2874.
|
21 |
WU D, WANG H, PENG J, et al. Machining fixture for adaptive CNC machining process of near-net-shaped jet engine blade[J]. Chinese Journal of Aeronautics, 2019, 33(4): 1311-1328.
|
22 |
WANG H, HUANG L, YAO C, et al. Integrated analysis method of thin-walled turbine blade precise machining[J]. International Journal of Precision Engineering & Manufacturing, 2015, 16: 1011-1019.
|
23 |
ZENG S S, WAN X J, LI W L, et al. A novel approach to fixture design on suppressing machining vibration of flexible workpiece[J]. International Journal of Machine Tools & Manufacture, 2012, 58: 29-43.
|
24 |
荆怀靖. 面向离线误差补偿的虚拟加工技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2005: 80-81.
|
|
JING H J. Research on virtual machining technology for off-line error compensation[D]. Harbin: Harbin Institute of Technology, 2005: 80-81 (in Chinese).
|
25 |
WU B H, ZHENG Z Y, WANG J, et al. Layout optimization of auxiliary support for deflection errors suppression in end milling of flexible blade[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(5-6): 1889-1905.
|
26 |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 133-136.
|
|
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 133-136 (in Chinese).
|