Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (15): 528964-528964.doi: 10.7527/S1000-6893.2023.28964
• Fluid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Lin BI1, Sen ZOU1,2, Zhigong TANG1(), Xianxu YUAN1, Chao WU1,3
Received:
2023-05-05
Revised:
2023-05-30
Accepted:
2023-06-08
Online:
2023-08-15
Published:
2023-06-09
Contact:
Zhigong TANG
E-mail:tangzhigong@126.com
Supported by:
CLC Number:
Lin BI, Sen ZOU, Zhigong TANG, Xianxu YUAN, Chao WU. Linear stability of microchannel flow considering rarefaction effects[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528964-528964.
Table 1
Eigenvalues of the least stable mode of Poiseuille flow (Ma=5×10-4, Re=2 000.0, α=1.0)
N | 高斯积分点: 5×5 | 高斯积分点: 8×8 | ||
---|---|---|---|---|
相速度 | 增长率 | 相速度 | 增长率 | |
33 | 0.312 117 65 | -0.019 972 51 | 0.312 118 05 | -0.019 974 29 |
49 | 0.312 099 84 | -0.019 828 63 | 0.312 100 80 | -0.019 829 83 |
65 | 0.312 100 02 | -0.019 809 90 | 0.312 100 26 | -0.019 811 27 |
81 | 0.312 100 07 | -0.019 804 71 | 0.312 099 98 | -0.019 806 09 |
97 | 0.312 099 70 | -0.019 803 42 | 0.312 100 42 | -0.019 804 57 |
Table 2
Eigenvalues of the least stable mode of Couette flow (Ma=5×10-4, Re=800.0, α=1.0)
N | 高斯积分点: 5×5 | 高斯积分点: 8×8 | ||
---|---|---|---|---|
相速度 | 增长率 | 相速度 | 增长率 | |
33 | ±0.576 433 81 | -0.129 635 06 | ±0.576 433 07 | -0.129 634 90 |
49 | ±0.576 468 64 | -0.129 539 31 | ±0.576 468 40 | -0.129 537 87 |
65 | ±0.576 472 79 | -0.129 527 99 | ±0.576 472 73 | -0.129 527 10 |
81 | ±0.576 474 26 | -0.129 525 29 | ±0.576 473 96 | -0.129 525 64 |
97 | ±0.576 474 64 | -0.129 524 27 | ±0.576 474 27 | -0.129 524 42 |
Table 3
Eigenvalues of the least stable mode of Couette flow (Ma=0.1, Kn=0.04, α=3.0)
N | Navier-Stokes方程(无滑移边界条件) | Navier-Stokes方程(滑移边界条件) | ||||
---|---|---|---|---|---|---|
相速度 | 增长率 | 相速度 | 增长率 | |||
40 | 1.483 883 1×10-14 | -1.197 056 4 | -5.828 452 1×10-14 | -1.168 249 8 | ||
80 | -1.905 262 5×10-14 | -1.197 055 2 | -1.815 787 0×10-13 | -1.168 252 7 | ||
120 | -4.825 780 4×10-11 | -1.197 055 1 | -5.743 615 3×10-13 | -1.168 253 0 | ||
N | BGK方程(高斯积分点: 12×12) | BGK方程(高斯积分点: 16×16) | ||||
相速度 | 增长率 | 相速度 | 增长率 | |||
40 | 1.394 621 1×10-14 | -1.154 724 7 | -3.161 691 4×10-14 | -1.154 627 8 | ||
80 | 1.394 571 8×10-14 | -1.154 704 3 | -2.821 082 6×10-14 | -1.154 603 4 | ||
120 | 1.329 705 9×10-14 | -1.154 703 4 | -3.080 486 8×10-14 | -1.154 602 4 |
Table 4
Eigenvalues of the least stable mode of Poiseuille flow (ax =0.002, Kn=0.01, α=3.0)
N | Navier-Stokes方程(无滑移边界条件) | Navier-Stokes方程(滑移边界条件) | ||||
---|---|---|---|---|---|---|
相速度 | 增长率 | 相速度 | 增长率 | |||
40 | 0.770 874 7 | -0.171 362 3 | 0.779 954 1 | -0.169 712 0 | ||
80 | 0.770 874 7 | -0.171 362 3 | 0.775 290 6 | -0.168 697 1 | ||
120 | 0.770 874 7 | -0.171 362 3 | 0.774 452 8 | -0.168 514 8 | ||
160 | 0.770 874 7 | -0.171 362 3 | 0.774 162 5 | -0.168 451 6 | ||
N | BGK(高斯积分点: 12×12) | BGK(高斯积分点: 16×16) | ||||
相速度 | 增长率 | 相速度 | 增长率 | |||
40 | 0.779 661 4 | -0.169 730 4 | 0.779 671 8 | -0.169 717 9 | ||
80 | 0.774 972 5 | -0.168 717 9 | 0.774 982 1 | -0.168 706 1 | ||
120 | 0.774 132 3 | -0.168 535 5 | 0.774 141 7 | -0.168 523 8 | ||
160 | 0.773 850 8 | -0.168 460 6 | 0.773 841 4 | -0.168 472 2 |
Table 5
Grid convergence analysis of growth rate corresponding to the least stable mode of Rayleigh-Bénard flow
α | N | 增长率 | ||
---|---|---|---|---|
Kn = 0.01 | Kn = 0.02 | Kn = 0.03 | ||
0.04 | 100 | -0.015 210 | -0.005 804 | -0.004 004 |
200 | -0.015 762 | -0.005 904 | -0.004 056 | |
300 | -0.015 816 | -0.005 914 | -0.004 061 | |
400 | -0.015 829 | -0.005 916 | -0.004 062 | |
0.06 | 100 | -0.022 570 | -0.014 783 | -0.009 484 |
200 | -0.022 716 | -0.014 899 | -0.009 538 | |
300 | -0.022 730 | -0.014 910 | -0.009 543 | |
400 | -0.022 733 | -0.014 913 | -0.009 545 |
1 | 周恒, 张涵信. 空气动力学的新问题[J]. 中国科学: 物理学 力学 天文学, 2015, 45(10): 104709. |
ZHOU H, ZHANG H X. New problems of aerodynamics[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(10): 104709 (in Chinese). | |
2 | 陈伟芳, 张志成, 吴其芬. 稀薄气体条件下Rayleigh-Bénard系统稳定性的DSMC仿真研究[J]. 空气动力学学报, 2002, 20(2): 211-216. |
CHEN W F, ZHANG Z C, WU Q F. Investigation of Rayleigh-Bénard instability in rarefied gas by DSMC method[J]. Acta Aerodynamica Sinica, 2002, 20(2): 211-216 (in Chinese). | |
3 | 张俊, 樊菁. Rayleigh-Bénard热对流的动理论分析[J]. 科学通报, 2008, 53(18): 2176-2180. |
ZHANG J, FAN J. Dynamic theory analysis of Rayleigh-Bénard thermal convection[J]. Chinese Science Bulletin, 2008, 53(18): 2176-2180 (in Chinese). | |
4 | STEFANOV S, CERCIGNANI C. Monte Carlo simulation of Bénard’s instability in a rarefied gas[J]. European Journal of Mechanics - B/Fluids, 1992, 11(5): 543-553. |
5 | CERCIGNANI C, STEFANOV S. Bénard’s instability in kinetic theory[J]. Transport Theory and Statistical Physics, 1992, 21(4-6): 371-381. |
6 | STEFANOV S, CERCIGNANI C. Monte Carlo simulation of the Taylor-Couette flow of a rarefied gas[J]. Journal of Fluid Mechanics, 1993, 256: 199-213. |
7 | STEFANOV S, CERCIGNANI C. Taylor-Couette flow of a rarefied gas[C]∥Proceedings of the International Symposium on Aerospace and Fluid Science. Sendai: Institute of Fluid Science, Tohoku University, 1994: 490-500. |
8 | STEFANOV S, CERCIGNANI C. Monte Carlo simulation of a channel flow of a rarefied gas[J]. European Journal of Mechanics-B/Fluids, 1994, 13: 93-114. |
9 | STEFANOV S, CERCIGNANI C. Monte Carlo simulation of the propagation of a disturbance in the channel flow of a rarefied gas[J]. Computers & Mathematics With Applications, 1998, 35(1-2): 41-53. |
10 | ESSAGHIR E, OUBARRA A, LAHJOMRI J. Linear stability analysis of laminar flow near a stagnation point in the slip flow regime[J]. The European Physical Journal Plus, 2017, 132(12): 545. |
11 | ESSAGHIR E, HADDOUT Y, OUBARRA A, et al. Non-similar solution of the forced convection of laminar gaseous slip flow over a flat plate with viscous dissipation: Linear stability analysis for local similar solution[J]. Meccanica, 2016, 51(1): 99-115. |
12 | HE X, ZHANG K, CAI C P. Stability analysis on nonequilibrium supersonic boundary layer flow with velocity-slip boundary conditions[J]. Fluids, 2019, 4(3): 142. |
13 | KLOTHAKIS A, QUINTANILHA Jr H, SAWANT S S, et al. Linear stability analysis of hypersonic boundary layers computed by a kinetic approach: A semi-infinite flat plate at Mach 4.5 and 9[J]. Theoretical and Computational Fluid Dynamics, 2022, 36(1): 117-139. |
14 | KLOTHAKIS A, SAWANT S S, QUINTANILHA Jr H, et al. Slip effects on the stability of supersonic laminar flat plate boundary layer[C]∥Proceedings of the AIAA Scitech 2021 Forum. Reston: AIAA, 2021: 2021-1659. |
15 | OU J H, CHEN J. Numerical study of supersonic boundary-layer modal stability for a slightly rarefied gas using Navier-Stokes approach[J]. Physics of Fluids, 2021, 33(11): 114107. |
16 | MANELA A, FRANKEL I. On the Rayleigh–Bénard problem in the continuum limit[J]. Physics of Fluids, 2005, 17(3): 036101. |
17 | BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Clarendon Press, 1994. |
18 | BOYD I D. Predicting breakdown of the continuum equations under rarefied flow conditions[C]∥AIP Conference Proceedings. New York: American Institute of Physics, 2003, 663: 899-906. |
19 | MANELA A, FRANKEL I. On the Rayleigh-Bénard problem in the continuum limit: effects of temperature differences and model of interaction[J]. Physics of Fluids, 2005, 17(11): 118105. |
20 | WANG Y P, KHAYAT R E, ZOBAER M A. Onset of thermal convection of a weakly rarefied Maxwellian gas: A continuum-slip approach[J]. Physics of Fluids, 2021, 33(2): 026102. |
21 | BEN-AMI Y, MANELA A. Effect of heat-flux boundary conditions on the Rayleigh-Bénard instability in a rarefied gas[J]. Physical Review Fluids, 2019, 4(3): 033402. |
22 | VINOGRADOVA O I. Slippage of water over hydrophobic surfaces[J]. International Journal of Mineral Processing, 1999, 56(1-4): 31-60. |
23 | MIN T, KIM J. Effects of hydrophobic surface on stability and transition[J]. Physics of Fluids, 2005, 17(10): 108106. |
24 | SEO J, MANI A. On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2016, 28(2): 025110. |
25 | PRALITS J O, ALINOVI E, BOTTARO A. Stability of the flow in a plane microchannel with one or two superhydrophobic walls[J]. Physical Review Fluids, 2017, 2: 013901. |
26 | XIONG X M, TAO J J. Linear stability and energy stability of plane Poiseuille flow with isotropic and anisotropic slip boundary conditions[J]. Physics of Fluids, 2020, 32(9): 094104. |
27 | CHEN K W, SONG B F. Linear stability of slip pipe flow[J]. Journal of Fluid Mechanics, 2021, 910: A35. |
28 | SPILLE A, RAUH A, BÜEHRING H. Critical curves of plane Poiseuille flow with slip boundary conditions[J]. Nonlinear Phenomena in Complex Systems, 2001, 3: 171-173. |
29 | GERSTING J M. Hydrodynamic stability of plane porous slip flow[J]. Physics of Fluids, 1974, 17(11): 2126. |
30 | STRAUGHAN B, HARFASH A J. Instability in Poiseuille flow in a porous medium with slip boundary conditions[J]. Microfluidics and Nanofluidics, 2013, 15(1): 109-115. |
31 | YOSHIDA H, AOKI K. Linear stability of the cylindrical Couette flow of a rarefied gas[J]. Physical Review E, 2006, 73(2): 021201. |
32 | GUO Z L, XU K, WANG R J. Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case[J]. Physical Review E, 2013, 88(3): 033305. |
33 | WU C, SHI B C, CHAI Z H, et al. Discrete unified gas kinetic scheme with a force term for incompressible fluid flows[J]. Computers & Mathematics With Applications, 2016, 71(12): 2608-2629. |
34 | LIU H T, CAO Y, CHEN Q, et al. A conserved discrete unified gas kinetic scheme for microchannel gas flows in all flow regimes[J]. Computers & Fluids, 2018, 167: 313-323. |
35 | SHIZGAL B. A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems[J]. Journal of Computational Physics, 1981, 41(2): 309-328. |
36 | MALIK M R. Numerical methods for hypersonic boundary layer stability[J]. Journal of Computational Physics, 1990, 86(2): 376-413. |
37 | HE X Y, SHAN X W, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases[J]. Physical Review E, 1998, 57(1): R13-R16. |
38 | HU S, ZHONG X L. Linear stability of viscous supersonic plane Couette flow[J]. Physics of Fluids, 1998, 10(3): 709-729. |
39 | SCHMID P J, HENNINGSON D S. Stability and transition in shear flows[M]. New York: Springer, 2001. |
[1] | Yiming WU, Siyi QIU, Yang XIANG, Hong LIU. Mode evolution characteristics of isolated wing tip vortex: Experimental study [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 127658-127658. |
[2] | LI Qiang, WAN Bingbing, YANG Kai, ZHU Tao. Experimental research on characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 124956-124956. |
[3] | NIE Han, SONG Wenping, HAN Zhonghua, CHEN Jianqiang, DUAN Maochang, WAN Bingbing. Automatic transition prediction for natural-laminar-flow wing design of supersonic transports [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526342-526342. |
[4] | XU Jiakuan, WANG Yuxuan, ZHANG Yang, QIAO Lei, LIU Jianxin, BAI Junqiang. Progress in amplification factor transport models in subsonic and transonic boundary layers [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526734-526734. |
[5] | HE Kang, LI Xinliang, LIU Hongwei. An extension of hybrid kinetic WENO method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 625909-625909. |
[6] | XU Aiguo, SHAN Yiming, CHEN Feng, GAN Yanbiao, LIN Chuandong. Progress of mesoscale modeling and investigation of combustion multiphase flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 625842-625842. |
[7] | CHENG Zepeng, QIU Siyi, XIANG Yang, SHAO Chun, ZHANG Miao, LIU Hong. Evolution mechanism of instability features of wingtip vortex pairs based on bi-global linear stability analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 123751-123751. |
[8] | QIU Siyi, CHENG Zepeng, XIANG Yang, LIU Hong. Mechanism of wingtip vortex wandering based on linear stability analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(8): 122712-122712. |
[9] | MENG Xiaoxuan, BAI Junqiang, ZHANG Meihong, WANG Meili, HE Xiaolong, WANG Hui. Laminar transition influencing factors of nacelle based on double eN method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(11): 123040-123040. |
[10] | ZHU Zhen, SONG Wenping, HAN Zhonghua. Automatic transition prediction for wing-body configurations using dual eN method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(2): 121707-121707. |
[11] | XU Jiakuan, BAI Junqiang. Amplification factor transport model based on boundary layer similarity solution [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(4): 1103-1113. |
[12] | GUO Xin, WANG Qiang. Stability Analysis of Single-stream Shear Mixing Layer Based on Parabolized Stability Equations [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(8): 1411-1420. |
[13] | Li Yueli;Li Dong;Yang Yong;Zuo Sui. Transition Control Experiment Based on Linear Stability Theory [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(12): 2275-2279. |
[14] | HUA Jun;XU Qing-yu;ZHANG Jia-zhong. NUMERICAL AND EXPERIMENTAL STUDY ON NONLINEAR DYNAMIC BEHAVIOR OF THE FLUID FILM BEARING-ROTOR SYSTEM WITH SQUEEZE FILM DAMPER [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2001, 22(1): 42-45. |
[15] | Wang Hu;Wang Tsunkuei. NONLINEAR STABILITY OF ORTHOTROPIC SHALLOW THIN CONICAL SHELLS UNDER UNIFORMLY DISTRIBUTED LOADING [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1990, 11(4): 131-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341