[1] SHEPPARD J W, KAUFMAN M A, WILMER T J. IEEE standards for prognostics and health management[J]. IEEE Aerospace and Electronic Systems Magazine, 2009, 24(9): 34-41. [2] JAVED K, GOURIVEAU R, ZERHOUNI N, et al. Enabling health monitoring approach based on vibration data for accurate prognostics[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 647-656. [3] 陈亚军, 刘辰辰, 王付胜. 预腐蚀和交替腐蚀作用下航空铝合金多轴疲劳行为及寿命预测[J]. 航空学报, 2019, 40(4): 222465. CHEN Y J, LIU C C, WANG F S. Multiaxial fatigue behavior and life prediction of aerospace aluminum alloy under pre-corrosion and alternate corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 222465 (in Chinese). [4] BROWN E R, MCCOLLOM N N, MOORE E E, et al. Prognostics and health management. A data-driven approach to supporting the F-35 lightning II[C]//2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-12. [5] VICHARE N M, PECHT M G. Prognostics and health management of electronics[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(1): 222-229. [6] LEI Y G, LI N P, GUO L, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834. [7] 王玺, 胡昌华, 任子强, 等. 基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命预测[J]. 航空学报, 2020, 41(2): 223291. WANG X, HU C H, REN Z Q, et al. Performance degradation modeling and remaining useful life prediction for aero-engine based on nonlinear Wiener process[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223291 (in Chinese). [8] 任子强, 司小胜, 胡昌华, 等. 融合多传感器数据的发动机剩余寿命预测方法[J]. 航空学报, 2019, 40(12): 223312. REN Z Q, SI X S, HU C H, et al. Remaining useful life prediction method for engine combining multi-sensors data[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 223312 (in Chinese). [9] PENG W W, LI Y F, YANG Y J, et al. Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates[J]. IEEE Transactions on Reliability, 2017, 66(1): 84-96. [10] LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1-11. [11] ZHU J, CHEN N, PENG W W. Estimation of bearing remaining useful life based on multiscale convolutional neural network[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3208-3216. [12] CHEN J L, JING H J, CHANG Y H, et al. Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process[J]. Reliability Engineering & System Safety, 2019, 185: 372-382. [13] 孔祥芬, 蔡峻青, 张利寒, 等. 大数据在航空系统的研究现状与发展趋势[J]. 航空学报, 2018, 39(12): 022311. KONG X F, CAI J Q, ZHANG L H, et al. Research status and development trend of big data in aviation system[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 022311 (in Chinese). [14] TSIATIS A. Semiparametric theory and missing data[M]. Berlin:Springer Science & Business Media, 2007. [15] KAISER J. Dealing with missing values in data[J]. Journal of Systems Integration, 2014: 42-51. [16] WITTEN I, FRANK E. Data mining: Practical machine learning tools and techniques with Java implementations[M]. Francisco: Morgan Kaufmann Publishers Inc.,2000. [17] LITTLE R J A. Regression with missing x’s: A review[J]. Journal of the American Statistical Association, 1992, 87(420): 1227-1237. [18] AMIRI M, JENSEN R. Missing data imputation using fuzzy-rough methods[J]. Neurocomputing, 2016, 205: 152-164. [19] SEAMAN S R, WHITE I R. Review of inverse probability weighting for dealing with missing data[J]. Statistical Methods in Medical Research, 2013, 22(3): 278-295. [20] KIM J K. Parametric fractional imputation for missing data analysis[J]. Biometrika, 2011, 98(1): 119-132. [21] BATISTA G E A P A, MONARD M C. An analysis of four missing data treatment methods for supervised learning[J]. Applied Artificial Intelligence, 2003, 17(5-6): 519-533. [22] MAZUMDER R, HASTIE T, TIBSHIRANI R. Spectral regularization algorithms for learning large incomplete matrices[J]. Journal of Machine Learning Research: JMLR, 2010, 11: 2287-2322. [23] FEDUS W, GOODFELLOW I, DAI A M. MaskGAN: Better text generation via filling in the_[EB/OL]. arXiv.preprint: 1801.077360,2018. [24] GONDARA L, WANG K. MIDA: Multiple imputation using denoising autoencoders[C]//Advances in Knowledge Discovery and Data Mining, 2018. [25] CHE Z P, PURUSHOTHAM S, CHO K, et al. Recurrent neural networks for multivariate time series with missing values[J]. Scientific Reports, 2018, 8: 6085. [26] YOON J, JORDON J, VAN DER SCHAAR M. GAIN: Missing data imputation using generative adversarial nets[EB/OL]. arXiv.preprint: 1806.02920,2018. [27] ZHENG S, FARAHAT A, GUPTA C. Generative adversarial networks for failure prediction[C]//Machine Learning and Knowledge Discovery in Databases, 2020. [28] LUO Y H, CAI X R, ZHANG Y, et al. Multivariate time series imputation with generative adversarial networks[C]//NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 1603-1614. [29] GOODFELLOW I J, POUGET J, MIRZA M, et al.Generative adversarial networks[C]//International Conference on Neural Information Processing System, 2014. [30] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 105-114. [31] BAI Y C, ZHANG Y Q, DING M L, et al. SOD-MTGAN: Small object detection via multi-task generative adversarial network[C]//Computer Vision-ECCV 2018, 2018. [32] YU L, ZHANG W, WANG J, et al. Seqgan: Sequence generative adversarial nets with policy gradient[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2017. [33] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015. [34] HOLLANDER M. Practical nonparametric statistics[M]. 3rd ed. New York: Wiley, 1999. [35] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. [36] ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks[J]. arXiv preprint arXiv:1701.04862, 2017. [37] STEPANČI Č M, JURIČI D, BŠKOSKI P. Fault detection of fuel cell systems based on statistical assessment of impedance data[J]. Energy Conversion and Management, 2019, 195: 76-85. [38] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014. [39] CHEN N G, LI C M. Hyperspectral image classification approach based on Wasserstein generative adversarial networks[C]//2020 International Conference on Machine Learning and Cybernetics (ICMLC). Piscataway: IEEE Press, 2020: 53-63. [40] PECHT M. Battery degradation data[R]. CALCE Battery Research Group, 2017. [41] XING Y J, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6): 811-820. [42] YU Y, HU C H, SI X S, et al. Averaged Bi-LSTM networks for RUL prognostics with non-life-cycle labeled dataset[J]. Neurocomputing, 2020, 402: 134-147. [43] SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine Run-to-failure simulation[C]//2008 International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2008: 1-9. |