[1] 赵旭东, 贾荣珍. ARJ21飞机工程模拟器关键技术研究[J]. 系统仿真学报, 2009, 21(21):6856-6858, 6864. ZHAO X D, JIA R Z. Study on key technology of ARJ21 aircraft engineering simulator[J]. Journal of System Simulation, 2009, 21(21):6856-6858, 6864(in Chinese). [2] 谢佼. 国产飞机ARJ21已累计安全飞行超10000小时:运送旅客近32万人次[N]. 人民日报, 2019-04-03(1). XIE J. The domestic ARJ21 aircraft has accumulated more than 10,000 hours of safe flight[N]. People's Daily, 2019-04-03(1) (in Chinese). [3] 余建斌, 沈文敏, 刘潺. ARJ21国产商用飞机运营客户增至7家[N]. 人民日报, 2020-11-11(1). YU J B, SHEN W M, LIU C. The number of ARJ21 domestic commercial aircraft operating customers increased to 7[N]. People's Daily, 2020-11-11(1) (in Chinese). [4] LIU F, LIU X Z, MOU M J, et al. Safety assessment of approximate segregated parallel operation on closely spaced parallel runways[J]. Chinese Journal of Aeronautics, 2019, 32(2):463-476. [5] PERRY R, HINTON D, STUEVER R, et al. NASA wake vortex research for aircraft spacing[C]//35th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1997. [6] O'CONNOR C J, RUTISHAUSER D K. Enhanced airport capacity through safe, dynamic reductions in aircraft separation:NASA's Aircraft Vortex Spacing System (AVOSS):2001-211052[R]. Washington, D.C.:NASA, 2001. [7] HOLZÄPFEL F, GERZ T, FRECH M, et al. The wake vortex prediction and monitoring system WSVBS part I:Design[J]. Air Traffic Control Quarterly, 2009, 17(4):301-322. [8] GERZ T, HOLZÄPFEL F, FRECH M, et al. The wake vortex prediction and monitoring system WSVBS part II:Performance and ATC integration at Frankfurt airport[J]. Air Traffic Control Quarterly, 2009, 17(4):323-346. [9] MATAYOSHI N. Dynamic wake vortex separation according to weather conditions[C]//2013 Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2013. [10] MATAYOSHI N, YOSHIKAWA E. Dynamic wake vortex separation combining with AMAN/DMAN concept[C]//15th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2015. [11] 林孟达, 崔桂香, 张兆顺, 等. 飞机尾涡演变及快速预测的大涡模拟研究[J]. 力学学报, 2017, 49(6):1185-1200. LIN M D, CUI G X, ZHANG Z S, et al. Large eddy simulation on the evolution and the fast-time prediction of aircraft wake vortices[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6):1185-1200(in Chinese). [12] BURNHAM D C, HALLOCK J N. Chicago monostatic acoustic vortex sensing system:Volume IV, Wake vortex decay:DOT/FAA/RD-79-103 IV[R]. Washington, D.C.:Department of Transportation, 1982. [13] 鲍锋, 刘锦生, 朱睿, 等. 飞机尾涡系Rayleigh-Ludwieg不稳定性实验研究[J]. 航空学报, 2015, 36(7):2166-2176. BAO F, LIU J S, ZHU R, et al. Experimental study on Rayleigh-Ludwieg instability of aircraft wake vortex[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2166-2176(in Chinese). [14] 邱思逸, 程泽鹏, 向阳, 等. 基于线性稳定性分析的翼尖涡摇摆机制[J]. 航空学报, 2019, 40(8):122712. QIU S Y, CHENG Z P, XIANG Y, et al. Mechanism of wingtip vortex wandering based on linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122712(in Chinese). [15] CHENG Z P, QIU S Y, XIANG Y, et al. Instability characteristics of a co-rotating wingtip vortex pair based on bi-global linear stability analysis[J]. Chinese Journal of Aeronautics, 2021, 34(5):1-16. [16] ROBINS R E, DELISI D P, GREENE G C. Algorithm for prediction of trailing vortex evolution[J]. Journal of Aircraft, 2001, 38(5):911-917. [17] 林孟达. 飞机尾涡演化特性与安全预测的大涡模拟研究[D]. 北京:清华大学, 2016:1-83. LIN M D. Study on aircraft wake vortex evolution and safety prediction by large eddy simulation[D]. Beijing:Tsinghua University, 2016:1-83(in Chinese). [18] ZHENG Z C, ASH R L. Study of aircraft wake vortex behavior near the ground[J]. AIAA Journal, 1996, 34(3):580-589. [19] HOLZÄPFEL F, STEEN M. Aircraft wake-vortex evolution in ground proximity:Analysis and parameterization[J]. AIAA Journal, 2007, 45(1):218-227. [20] PROCTOR F, HAMILTON D, HAN J. Wake vortex transport and decay in ground effect-Vortex linking with the ground[C]//38th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2000. [21] PROCTOR F. Numerical study of a long-lived, isolated wake vortex in ground effect[C]//6th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2014. [22] LIN M D, HUANG W X, ZHANG Z S, et al. Numerical study of aircraft wake vortex evolution near ground in stable atmospheric boundary layer[J]. Chinese Journal of Aeronautics, 2017, 30(6):1866-1876. [23] ZHANG J D, ZUO Q H, LIN M D, et al. Evolution of vortices in the wake of an ARJ21 airplane:Application of the lift-drag model[J]. Theoretical and Applied Mechanics Letters, 2020, 10(6):419-428. [24] MENEVEAU C, LUND T S, CABOT W H. A Lagrangian dynamic subgrid-scale model of turbulence[J]. Journal of Fluid Mechanics, 1996, 319:353. [25] HOLZÄPFEL F, GERZ T, BAUMANN R. The turbulent decay of trailing vortex pairs in stably stratified environments[J]. Aerospace Science and Technology, 2001, 5(2):95-108. [26] HENNEMANN I, HOLZÄPFEL F. Large-eddy simulation of aircraft wake vortex deformation and topology[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2011, 225(12):1336-1350. [27] MISAKA T, HOLZÄPFEL F, GERZ T. Large-eddy simulation of aircraft wake evolution from roll-up until vortex decay[J]. AIAA Journal, 2015, 53(9):2646-2670. [28] LIN M D, CUI G X, ZHANG Z S. Large eddy simulation of aircraft wake vortex with self-adaptive grid method[J]. Applied Mathematics and Mechanics, 2016, 37(10):1289-1304. [29] GNOFFO P A. A finite-volume, adaptive grid algorithm applied to planetary entry flowfields[J]. AIAA Journal, 1983, 21(9):1249-1254. [30] LIN M D, CUI G X, ZHANG Z S. A new vortex sheet model for simulating aircraft wake vortex evolution[J]. Chinese Journal of Aeronautics, 2017, 30(4):1315-1326. [31] KEYE S. Fluid-structure coupled analysis of a transport aircraft and flight-test validation[J]. Journal of Aircraft, 2011, 48(2):381-390. [32] 吴子牛, 王兵, 周睿, 等. 空气动力学[M]. 北京:清华大学出版社, 2007. WU Z N, WANG B, ZHOU R, et al. Aerodynamics[M]. Beijing:Tsinghua University Press, 2007(in Chinese). [33] KROO I. Drag due to lift:concepts for prediction and reduction[J]. Annual Review of Fluid Mechanics, 2001, 33(1):587-617. [34] 赵鸣. 大气边界层动力学[M]. 北京:高等教育出版社, 2006. ZHAO M. Dynamics of atmospheric boundary layer[M]. Beijing:Higher Education Press, 2006(in Chinese). [35] JARRAUD M. Guide to meteorological instruments and methods of observation (WMO-NO.8)[R]. Geneva World Meteorological Organization, 2008. [36] HAN J, ARYA S P, SHAOHUA S, et al. An estimation of turbulent kinetic energy and energy dissipation rate based on atmospheric boundary layer similarity theory:NASA CR-2000-210298[R]. Washington,D.C.:2000. [37] ARYA S P. Atmospheric boundary layer and its parameterizationwind climate in cities[M]. Amsterdam:Springer, 1995. [38] ROGALLO R S. Numerical experiments in homogeneous turbulence:NASA TM-8131[R]. Washington, D.C.:NASA, 1981. [39] BECHARA W, BAILLY C, LAFON P, et al. Stochastic approach to noise modeling for free turbulent flows[J]. AIAA Journal, 1994, 32(3):455-463. [40] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285:69-94. [41] ROBINS R E, DELISI D P, GREENE G C. Algorithm for prediction of trailing vortex evolution[J]. Journal of Aircraft, 2001, 38(5):911-917. [42] HOLZÄPFEL F. Probabilistic two-phase wake vortex decay and transport model[J]. Journal of Aircraft, 2003, 40(2):323-331. [43] CROW S C. Stability theory for a pair of trailing vortices[J]. AIAA Journal, 1970, 8(12):2172-2179. [44] MISAKA T, HOLZÄPFEL F, HENNEMANN I, et al. Vortex bursting and tracer transport of a counter-rotating vortex pair[J]. Physics of Fluids, 2012, 24(2):025104. [45] STEPHAN A, HOLZÄPFEL F, MISAKA T. Aircraft wake-vortex decay in ground proximity-physical mechanisms and artificial enhancement[J]. Journal of Aircraft, 2013, 50(4):1250-1260. [46] SCHWARZ C W, HAHN K U. Full-flight simulator study for wake vortex hazard area investigation[J]. Aerospace Science and Technology, 2006, 10(2):136-143. [47] LANG S, TITTSWORTH J, BRYANT W, et al. Progress on an ICAO wake turbulence Re-categorization effort[C]//AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2010. |