[1] 陈坚强, 袁先旭, 涂国华, 等.高超声速边界层转捩的几点认识[J].中国科学(物理学力学天文学), 2019, 49(11):121-134. CHEN J Q, YUAN X X, TU G H, et al.Recent progresses on hypersonic boundary-layer transition[J].Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(11):121-134(in Chinese). [2] 刘君, 邹东阳, 徐春光.基于非结构动网格的非定常激波装配法[J].空气动力学学报, 2015, 33(1):10-16. LIU J, ZOU D Y, XU C G.An unsteady shock-fitting technique based on unstructured moving grids[J].Acta Aerodynamica Sinica, 2015, 33(1):10-16(in Chinese). [3] JIANG G S, SHU C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics, 1996, 126(1):202-228. [4] 刘君, 韩芳.有关有限差分高精度格式两个应用问题的讨论[J].空气动力学学报, 2020, 38(2):244-253. LIU J, HAN F.Discussions on two problems in applications of high-order finite difference schemes[J].Acta Aerodynamica Sinica, 2020, 38(2):244-253(in Chinese). [5] 刘君, 魏雁昕, 韩芳.有限差分法的坐标变换诱导误差[J].航空学报, 2021, 42(6):124397. LIU J, WEI Y X, HAN F.Coordinate transformation induced errors of finite difference method[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(6):124397(in Chinese). [6] ZHU Y J, SUN Z S, REN Y X, et al.A numerical strategy for freestream preservation of the high order weighted essentially non-oscillatory schemes on stationary curvilinear grids[J].Journal of Scientific Computing, 2017, 72(3):1021-1048. [7] 朱志斌, 杨武兵, 禹旻.满足几何守恒律的WENO格式及其应用[J].计算力学学报, 2017, 34(6):779-784. ZHU Z B, YANG W B, YU M.A WENO scheme with geometric conservation law and its application[J].Chinese Journal of Computational Mechanics, 2017, 34(6):779-784(in Chinese). [8] 刘君, 韩芳, 夏冰.有限差分法中几何守恒律的机理及算法[J].空气动力学学报, 2018, 36(6):917-926. LIU J, HAN F, XIA B.Mechanism and algorithm for geometric conservation law in finite difference method[J].Acta Aerodynamica Sinica, 2018, 36(6):917-926(in Chinese). [9] 刘君, 韩芳.有限差分法中的贴体坐标变换[J].气体物理, 2018, 3(5):18-29. LIU J, HAN F.Body-fitted coordinate transformation for finite difference method[J].Physics of Gases, 2018, 3(5):18-29(in Chinese). [10] THOMAS P, LOMBARD C.The Geometric Conservation Law-A link between finite-difference and finite-volume methods of flow computation on moving grids[C]//11th Fluid and PlasmaDynamics Conference.Reston:AIAA, 1978. [11] THOMAS P D, LOMBARD C K.Geometric conservation law and its application to flow computations on moving grids[J].AIAA Journal, 1979, 17(10):1030-1037. [12] 刘巍, 张理论, 王勇献.计算空气动力学并行编程基础[M].北京:国防工业出版社, 2013. LIU W, ZHANG L L, WANG Y X.Foundations of computational aerodynamics parallel programming[M].Beijing:National Defense Industry Press, 2013(in Chinese). [13] 吴子牛.计算流体力学基本原理[M].北京:科学出版社, 2001. WU Z N.Computational fluid dynamics[M].Beijing:Science Press, 2001(in Chinese). [14] VINOKUR M.An analysis of finite-difference and finite-volume formulations of conservation laws[J].Journal of Computational Physics, 1989, 81(1):1-52. [15] 张德良.计算流体力学教程[M].北京:高等教育出版社, 2010. ZHANG D L.A course in computational fluid dynamics[M].Beijing:Higher Education Press, 2010(in Chinese). [16] 阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社, 2006. YAN C.计算流体力学方法及应用[M].Beijing:Beihang University Press, 2006(in Chinese). [17] VAN LEER B.Towards the ultimate conservative difference scheme.V.A second-order sequel to Godunov's method[J].Journal of Computational Physics, 1979, 32(1):101-136. [18] ROE P L.The use of the Riemann problem in finite difference schemes[C]//Seventh International Conference on Numerical Methods in Fluid Dynamics, 1981. [19] ROE P.My way:a computational autobiography[J].Communications on Applied Mathematics and Computation, 2020, 2(3):321-340. [20] FRIEDRICH O.Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids[J].Journal of Computational Physics, 1998, 144(1):194-212. [21] HU C Q, SHU C W.Weighted essentially non-oscillatory schemes on triangular meshes[J].Journal of Computational Physics, 1999, 150(1):97-127. [22] ALHAWWARY M, WANG Z J.Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws[J].Journal of Computational Physics, 2018, 373:835-862. [23] 徐文灿, 胡俊.计算流体力学[M].北京:北京理工大学出版社, 2011. XU W C, HU J.Computational fluid dynamics[M].Beijing:Beijing Insititute of Technology Press, 2011(in Chinese). [24] DENG X G, MIN Y B, MAO M L, et al.Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J].Journal of Computational Physics, 2013, 239:90-111. [25] 刘君, 陈洁, 韩芳.基于离散等价方程的非结构网格有限差分法[J].航空学报, 2020, 41(1):123248. LIU J, CHEN J, HAN F.Finite difference method for unstructured grid based on discrete equivalent equation[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123248(in Chinese). [26] 刘君, 魏雁昕, 陈洁.基于非结构网格有限差分法的扎染算法[J].航空学报, 2021, 42(7):124557. LIU J, WEI Y X, CHEN J.Tie-dye algorithm based on finite difference method for unstructured grid[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(7):124557(in Chinese). [27] CHEN Z D, ZHANG F, LIU J, et al.An iterative near-boundary reconstruction strategy for unstructured finite volume method[J].Journal of Computational Physics, 2020, 418:109621. |