ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (1): 24758.doi: 10.7527/S1000-6893.2020.24758
• Reviews • Previous Articles Next Articles
CHEN Weishi1, HUANG Yifeng1, CHEN Xiaolong2, LU Xianfeng1, ZHANG Jie1
Received:
2020-09-16
Revised:
2020-10-26
Online:
2022-01-15
Published:
2020-10-23
Supported by:
CLC Number:
CHEN Weishi, HUANG Yifeng, CHEN Xiaolong, LU Xianfeng, ZHANG Jie. Development and applications of airport avian radar: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 24758.
[1] FAA. Advisory circular on reporting wildlife aircraft strikes: 150/5200-32B[R]. Washington, D.C.: FAA, 2013. [2] NOHARA T J. Could avian radar have prevented US Airways flight 1549’s bird strike?[C]//11th Joint Meeting of Bird Strike Committee USA & Canada, 2010 [3] 中国民用航空局. 关于2019年度运输机场鸟击防范工作情况的通报: 局发明电〔2020〕567号[P]. 2020-03-06. CAAC. Notice on bird strike prevention work of transport airport in 2019: No.567, 2020[P]. 2020-03-06(in Chinese). [4] 陈唯实, 张洁, 卢贤锋. 基于探鸟雷达数据的机场鸟情分析[J]. 中国民用航空, 2020(1): 43-45. CHEN W S, ZHANG J, LU X F. Airport bird situation analysis based on avian radar data[J]. China Civil Aviation, 2020(1): 43-45(in Chinese). [5] 陈唯实, 李敬. 雷达探鸟技术发展与应用综述[J]. 现代雷达, 2017, 39(2): 7-17. CHEN W S, LI J. Review on development and applications of avian radar technology[J]. Modern Radar, 2017, 39(2): 7-17(in Chinese). [6] NOHARA T J, WEBER P, UNKRAINEC A, et al. An overview of avian radar developments-past, present and future[C]//2007 Bird Strike Committee USA/Canada, 9th Annual Meeting, 2007. [7] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11): 30-38. CHEN X L, GUAN J, HUANG Y, et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35(11): 30-38(in Chinese). [8] BEASON R C, NOHARA T J, WEBER P. Beware the Boojum: Caveats and strengths of avian radar[J]. Human-Wildlife Interactions, 2013, 7(1): 16-46 [9] BURGER A E, CHATWIN T A, CULLEN S A, et al. Application of radar surveys in the management of nesting habitat of Marbled Murrelets Brachyramphus marmoratus[J]. Marine Ornithology, 2004, 32(1): 1-11. [10] GAUTHREAUX S A. The flight behavior of migrating birds in changing wind fields: Radar and visual analyses[J]. Integrative and Comparative Biology, 2015, 31(1): 187-204. [11] HARMATA ALAN R, PODRUZNY KEVIN M, ZELENAK JAMES R, et al. Using marine surveillance radar to study bird movements and impact assessment[J]. Wildlife Society Bulletin, 1999, 27(1): 44-52. [12] 陈唯实, 黄毅峰, 卢贤锋, 等. 基于气象雷达的鸟类迁徙监视预警[J]. 中国民用航空, 2020(7): 48-51. CHEN W S, HUANG Y F, LU X F, et al. Surveillance and early warning of bird migration based on weather radar[J]. China Civil Aviation, 2020(7): 48-51(in Chinese). [13] 宁焕生, 刘文明, 李敬, 等. 航空鸟击雷达鸟情探测研究[J]. 电子学报, 2006, 34(12): 2232-2237. NING H S, LIU W M, LI J, et al. Research on radar avian detection for aviation[J]. Acta Electronica Sinica, 2006, 34(12): 2232-2237(in Chinese). [14] 陈唯实, 宁焕生, 李敬, 等. 基于两种扫描方式的雷达探鸟系统[J]. 北京航空航天大学学报, 2009, 35(3): 380-383. CHEN W S, NING H S, LI J, et al. Avian radar system based on two scanning modes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3): 380-383(in Chinese). [15] CHEN W S, NING H, JIAN L, et al. Flight path detection of bird targets in radar images[J]. Chinese Journal of Electronics, 2009, 18(1): 192-194. [16] HUANSHENG N, WEISHI C, JING L. Radar target tracking in cluttered environment based on particle filtering[J]. The Aeronautical Journal, 2010, 114(1155): 309-314. [17] NING H S, CHEN W S, MAO X, et al. Bird-aircraft strike avoidance radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(1): 19-28. [18] CHEN W S, NING H S, LI J. Flying bird detection and hazard assessment for avian radar system[J]. Journal of Aerospace Engineering, 2012, 25(2): 246-255. [19] 刘玉琪, 易建新, 万显荣, 等. 数字电视外辐射源雷达多旋翼无人机微多普勒效应实验研究[J]. 雷达学报, 2018, 7(5): 585-592. LIU Y Q, YI J X, WAN X R, et al. Experimental research on micro-Doppler effect of multi-rotor drone with digital television based passive radar[J]. Journal of Radars, 2018, 7(5): 585-592(in Chinese). [20] 陈宏昆, 察豪, 刘峰. 鸟类目标微多普勒分析及参数估计[J]. 电讯技术, 2019, 59(4): 431-436. CHEN H K, CHA H, LIU F. Micro-Doppler analysis and parameter estimation of bird target[J]. Telecommunication Engineering, 2019, 59(4): 431-436(in Chinese). [21] 王胜国, 孔繁, 吴霞飞, 等. 一种基于接收相参的鸟类目标探测雷达[J]. 电子科技, 2015, 28(7): 8-11. WANG S G, KONG F, WU X F, et al. An avian target detection radar based on coherent-on-receive[J]. Electronic Science and Technology, 2015, 28(7): 8-11(in Chinese). [22] 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803-827. CHEN X L, CHEN W S, RAO Y H, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803-827(in Chinese). [23] WALTER G. Radar ornithology[J]. The Auk, 1969, 86(3): 578-579. [24] EDWARDS J, HOUGHTON E W. Radar echoing area polar diagrams of birds[J]. Nature, 1959, 184(4692): 1059. [25] NOHARA T J, BEASON R C, WEBER P. Using radar cross-section to enhance situational awareness tools for airport avian radars[J]. Human-Wildlife Interactions, 2011, 5(2): 210-217. [26] DYBDAL R B. Radar cross section measurements[J]. Proceedings of the IEEE, 1987, 75(4): 498-516. [27] MERRILL I S. Introduction to radar systems[M]. 3rd ed. New York: McGraw-Hill Companies, Inc. 2001: 337-340. [28] BRIGGS J N. Target detection by marine radar[M]. London: Institution of Engineering and Technology, 2004. [29] GREEN M, ALERSTAM T. Flight speeds and climb rates of Brent Geese: Mass-dependent differences between spring and autumn migration[J]. Journal of Avian Biology, 2000, 31(2): 215-225. [30] BRUDERER B, BOLDT A. Flight characteristics of birds:I.radar measurements of speeds[J]. Ibis, 2001, 143(2): 178-204. [31] ALERSTAM T, ROSÉN M, BÄCKMAN J, et al. Flight speeds among bird species: Allometric and phylogenetic effects[J]. PLoS Biology, 2007, 5(8): e197. [32] NOHARA T J, WEBER P, PREMJI A, et al. Affordable avian radar surveillance systems for natural resource management and BASH applications[C]//IEEE International Radar Conference. Piscataway: IEEE Press, 2005: 10-15. [33] BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 5-18. [34] BEASON R C, WEBER P, NOHARA T J. Color vision as a model for precise altitude determination using avian radar[C]//Proceedings of the International Bird Strike Committee, 2010. [35] 胡程, 李卫东, 王锐. 基于全极化的相参雷达迁飞昆虫观测[J]. 信号处理, 2019, 35(6): 951-957. HU C, LI W D, WANG R. Fully polarimetric coherent radar for migratory insect observation[J]. Journal of Signal Processing, 2019, 35(6): 951-957(in Chinese). [36] 陈唯实. 基于时域特性的非相参雷达目标检测与跟踪[J]. 系统工程与电子技术, 2016, 38(8): 1800-1807. CHEN W S. Incoherent radar target detection and tracking with temporal features[J]. Systems Engineering and Electronics, 2016, 38(8): 1800-1807(in Chinese). [37] 张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531-547. ZHANG Q, HU J, LUO Y, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547(in Chinese). [38] JAHANGIR M, BAKER C J, OSWALD G A. Doppler characteristics of micro-drones with L-Band multibeam staring radar[C]//2017 IEEE Radar Conference(RadarConf). Piscataway: IEEE Press, 2017: 1052-1057. [39] 陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1): 123-134. CHEN X L, GUAN J, HE Y. Applications and prospect of micro-motion theory in the detection of sea surface target[J]. Journal of Radars, 2013, 2(1): 123-134(in Chinese). [40] CLEMENTE C. The micro-Doppler effect in radar[J]. The Aeronautical Journal, 2012, 116(1176): 221. [41] RAHMAN S, ROBERTSON D A. Radar micro-Doppler signatures of drones and birds at K-band and W-band[J]. Scientific Reports, 2018, 8: 17396. [42] ANDERSON R. Avian Radar Systems[EB/OL].[2020-08-31]. http://www.detect-inc.com/downloads. [43] WEBER P, NOHARA T J, GAUTHREAUX S JR. Affordable, real-time, 3-D avian radar networks for centralized North American bird advisory systems[C]//Bird Strike Committee Proceedings, 2005. [44] FAA. Advisory circular on airport avian radar systems: 150/5220-25[R]. Washington, D.C.: FAA, 2010. [45] HOFFMANN F, RITCHIE M, FIORANELLI F, et al. Micro-Doppler based detection and tracking of UAVs with multistatic radar[C]//2016 IEEE Radar Conference. Piscataway: IEEE Press, 2016: 1-6. [46] JAHANGIR M, BAKER C J, OSWALD G A. Doppler characteristics of micro-drones with L-Band multibeam staring radar[C]//2017 IEEE Radar Conference. Piscataway: IEEE Press, 2017: 1052-1057. [47] 陈唯实, 万健, 李敬. 基于机场探鸟雷达数据的鸟击风险评估[J]. 北京航空航天大学学报, 2013, 39(11): 1431-1436. CHEN W S, WAN J, LI J. Bird strike risk assessment with airport avian radar data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1431-1436(in Chinese). [48] CHEN W S. Spatial and temporal features selection for low-altitude target detection[J]. Aerospace Science and Technology, 2015, 40: 171-180. [49] 陈唯实, 黄毅峰, 陈小龙, 等. 机场净空区飞鸟与非合作无人机目标识别[J]. 民航学报, 2020, 4(3): 27-33. CHEN W S, HUANG Y F, CHEN X L, et al. Recognition methods of flying bird and non-cooperative drone targets in airport clearance area[J]. Journal of Civil Aviation, 2020, 4(3): 27-33(in Chinese). [50] ROBIN Systems & Services[EB/OL].[2020-08-31]. http://www.robinradar.com/downloads/. [51] 赵春雨. 超宽角扫描多波束透镜天线关键技术研究[D]. 成都: 电子科技大学, 2020. ZHAO C Y. Studies on key techniques of ultra-wide-angle scanning multi-beam lens antennas[D]. Chengdu: University of Electronic Science and Technology of China, 2020(in Chinese). [52] 徐飞. 基于FPGA的一种通用DBF运算单元实现[J]. 火控雷达技术, 2020, 49(2): 66-69. XU F. Research on the implementation of extensible DBF radar signal processor based on FPGA[J]. Fire Control Radar Technology, 2020, 49(2): 66-69(in Chinese). [53] 潘忠堂. 新型船用导航雷达结构总体设计[J]. 电子机械工程, 2019, 35(5): 17-20. PAN Z T. Structural design of new marine navigation radar[J]. Electro-Mechanical Engineering, 2019, 35(5): 17-20(in Chinese). [54] KHAN M S, IFTIKHAR A, SHUBAIR R M, et al. A four element, planar, compact UWB MIMO antenna with WLAN band rejection capabilities[J]. Microwave and Optical Technology Letters, 2020, 62(10): 3124-3131. [55] 李慧, 赵永波, 程增飞. 基于线性调频时宽的MIMO雷达正交波形设计[J]. 电子与信息学报, 2018, 40(5): 1151-1158. LI H, ZHAO Y B, CHENG Z F. MIMO radar orthogonal waveform set design based on chirp durations[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1151-1158(in Chinese). [56] 崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537-557. CUI G L, YU X X, YANG J, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537-557(in Chinese). [57] 纠博, 刘宏伟, 胡利平, 等. 针对目标识别的波形优化设计方法[J]. 电子与信息学报, 2009, 31(11): 2585-2590. JIU B, LIU H W, HU L P, et al. A method of waveform design for the recognition of radar targets[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2585-2590(in Chinese). [58] 陈唯实, 闫军, 李敬. 基于Rao-Blackwellized蒙特卡罗数据关联的检测跟踪联合优化[J]. 北京航空航天大学学报, 2018, 44(4): 700-708. CHEN W S, YAN J, LI J. Joint optimization of detection and tracking with Rao-Blackwellized Monte Carlo data association[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 700-708(in Chinese). [59] 陈唯实, 宁焕生, 李敬, 等. 基于鸟类目标散射特性分析的雷达探鸟实验[J]. 航空学报, 2009, 30(7): 1312-1318. CHEN W S, NING H S, LI J, et al. Avian radar detection experiment based on analysis of bird targets' scattering characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1312-1318(in Chinese). [60] CHEN W S, NING H S. Edge clutter rejection for PPI radar images[J]. Aircraft Engineering and Aerospace Technology, 2013, 86(1): 19-25. [61] 陈唯实, 李敬. 基于空域特性的低空空域雷达目标检测[J]. 航空学报, 2015, 36(9): 3060-3068. CHEN W S, LI J. Radar target detection in low-altitude airspace with spatial features[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3060-3068(in Chinese). [62] PANDA M, NGODUY D, VU H L. Multiple model stochastic filtering for traffic density estimation on urban arterials[J]. Transportation Research Part B: Methodological, 2019, 126: 280-306. [63] 陈唯实, 黄毅峰, 卢贤锋, 等. 基于探鸟雷达的机场周边鸟类目标数量估计[J]. 北京航空航天大学学报, 2021, 47(8): 1533-1542. CHEN W S, HUANG Y F, LU X F, et al. Estimating number of birds around airport based on avian radar[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1533-1542(in Chinese). [64] 龙腾. 新体制民用雷达系统理论与关键技术[J]. 光学与光电技术, 2019, 17(6): 6-10. LONG T. Novel civilian radar system theory and key technologies[J]. Optics & Optoelectronic Technology, 2019, 17(6): 6-10(in Chinese). [65] 陈唯实, 黄毅峰, 卢贤锋. 多传感器融合的无人机探测技术应用综述[J]. 现代雷达, 2020, 42(6): 15-29. CHEN W S, HUANG Y F, LU X F. Survey on application of multi-sensor fusion in UAV detection technology[J]. Modern Radar, 2020, 42(6): 15-29(in Chinese). [66] 陈唯实, 刘佳, 陈小龙, 等. 基于运动模型的低空非合作无人机目标识别[J]. 北京航空航天大学学报, 2019, 45(4): 687-694. CHEN W S, LIU J, CHEN X L, et al. Non-cooperative UAV target recognition in low-altitude airspace based on motion model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 687-694(in Chinese). [67] SINGH A K, KIM Y H. Automatic measurement of blade length and rotation rate of drone using W-band micro-Doppler radar[J]. IEEE Sensors Journal, 2018, 18(5): 1895-1902. [68] 宋晨, 周良将, 吴一戎, 等. 基于自相关-倒谱联合分析的无人机旋翼转动频率估计方法[J]. 电子与信息学报, 2019, 41(2): 255-261. SONG C, ZHOU L J, WU Y R, et al. An estimation method of rotation frequency of unmanned aerial vehicle based on auto-correlation and cepstrum[J]. Journal of Electronics & Information Technology, 2019, 41(2): 255-261(in Chinese). [69] CHEN X L, GUAN J, LIU N B, et al. Maneuvering target detection via radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 939-953. [70] CHEN X L, GUAN J, CHEN W S, et al. Sparse long-time coherent integration-based detection method for radar low-observable manoeuvring target[J]. IET Radar, Sonar & Navigation, 2020, 14(4): 538-546. [71] CHEN X L, GUAN J, WANG G Q, et al. Fast and refined processing of radar maneuvering target based on hierarchical detection via sparse fractional representation[J]. IEEE Access, 2019, 7: 149878-149889. [72] TORVIK B, OLSEN K E, GRIFFITHS H. Classification of birds and UAVs based on radar polarimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1305-1309. [73] SAQIB M, KHAN S D, SHARMA N, et al. A study on detecting drones using deep convolutional neural networks[C]//201714th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS). Piscataway: IEEE Press, 2017: 1-5. [74] CRAYE C, ARDJOUNE S. Spatio-temporal semantic segmentation for drone detection[C]//2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS). Piscataway: IEEE Press, 2019: 1-5. [75] MAGOULIANITIS V, ATALOGLOU D, DIMOU A, et al. Does deep super-resolution enhance UAV detection?[C]//2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS). Piscataway: IEEE Press, 2019: 1-6. [76] AKER C, KALKAN S. Using deep networks for drone detection[C]//2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS). Piscataway: IEEE Press, 2017: 1-6. [77] ROZANTSEV A, LEPETIT V, FUA P. Detecting flying objects using a single moving camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(5): 879-892. [78] 赵超. 基于物联网的机场驱鸟系统的研制[D]. 济南: 山东师范大学, 2014. ZHAO C. Develop of intelligent drive away birds for airport system based on Internet of Things[D]. Jinan: Shandong Normal University, 2014(in Chinese). [79] 陈唯实, 闫军, 张洁, 等. 基于支持向量机的机场智能驱鸟决策[J]. 北京航空航天大学学报, 2018, 44(7): 1547-1553. CHEN W S, YAN J, ZHANG J, et al. Intelligent decision making for airport bird-repelling with support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1547-1553(in Chinese). |
[1] | Ziling WANG, Zhenyu XIONG, Lucheng YANG, Ruining YANG, Linzhou HUANG. Spaceborne SAR ship target recognition network guided by AIS and optical remote sensing images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 328672-328672. |
[2] | Yi ZHANG, Yan ZHANG, Yu ZHANG, Yong ZHANG, Di LIU. Infrared aircraft target detection method based on multi-level feature enhancement fusion [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 629220-629220. |
[3] | YIN Dongliang, HUANG Xiaoying, WU Yanjie, HE Youchen, XIE Jingwei. Target recognition decision method based on cloud model and improved D-S evidence theory [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 324768-324768. |
[4] | HU Xuchao, TAN Xiansi, QU Zhiguo, LUO Yi, CHI Pengfei. Wind turbine clutter suppression method based on dynamic reconstruction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 323269-323269. |
[5] | ZHOU Daiying, ZHANG Ying, FENG Jian. Estimation of target precession frequency based on time-domain difference of sequential HRRPs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(S1): 722183-722183. |
[6] | TANG Zhengzhao, DONG Chunxi, CHANG Xin, LIU Mingming, ZHAO Guoqing. ISAR micro-Doppler scatter-wave jamming method based on towed jammer [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(7): 322007-322007. |
[7] | GUAN Xin, SUN Guidong, YI Xiao, GUO Qiang. Hybrid multiple attribute recognition based on coefficient of incidence bull's-eye-distance [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(7): 2431-2443. |
[8] | SUN Guidong, GUAN Xin, YI Xiao, WANG Hong. Recognition of multi-granularity linguistic and decision attribute based on cloud map [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(10): 3349-3358. |
[9] | JIANG Xiangwen, ZHAO Qijun, MENG Chen. Effect of Helicopter Rotor Blade Shape on Its Radar Signal Characteristics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(11): 3123-3136. |
[10] | XIAO Li, LU Zaiqi, ZHOU Jianxiong, FU Qiang. Centroid Position Estimation of Ballistic Target in Midcourse [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(1): 110-117. |
[11] | ZHANG Wei, TONG Chuangming, ZHANG Qun, ZHANG Ya'nan. Rotating Targets Detection with Dual-channel SAR Based on Time-frequency Analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(10): 1914-1923. |
[12] | Liu Jin;Wang Xuesong;Ma Liang;Wang Tao;Feng Dejun;Li Yongzhen;Wang Guoyu. Experimental Study on Dynamic Scattering Properties of Space Precession Target [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(5): 1014-1023. |
[13] | Xiao Li;Zhou Jianxiong;He Jun;Fu Qiang. Improved Autocorrelation Method for Precession Period Estimation of Ballistic Target in Midcourse [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(4): 812-818. |
[14] | Diao Weihe;Mao Xia;Chang Le. A New Quality Estimation Method for Infrared Target Images [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(10): 2026-2033. |
[15] | Wang Dianwei;Li Yanjun;Zhang Ke. Time-frequency Signature Extraction and Recognition of Target Based on S-transform [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(2): 305-310. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341