[1] CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1): 41-75. [2] RUDER S. An overview of multi-task learning in deep neural networks[DB/OL]. arXiv preprint: 1706.05098, 2017. [3] ZHANG Y, YANG Q. A survey on multi-task learning[DB/OL]. arXiv preprint: 1707.08114, 2017. [4] 张钰, 刘建伟, 左信. 多任务学习[J]. 计算机学报, 2020, 43(7): 1340-1378. ZHANG Y, LIU J W, ZUO X. Survey of multi-task learning[J]. Chinese Journal of Computers, 2020, 43(7): 1340-1378(in Chinese). [5] VANDENHENDE S, GEORGOULIS S, VAN GOOL L. MTI-net: Multi-scale task interaction networks for multi-task learning[M]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 527-543. [6] ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: A benchmark[C]//2015 IEEE International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2015: 1116-1124. [7] LI W, ZHAO R, XIAO T, et al. DeepReID: Deep filter pairing neural network for person Re-identification[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 152-159. [8] RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]//Computer Vision-ECCV 2016 Workshops, 2016. [9] WAH C, BRANSON S, WELINDER P, et al. The caltech-ucsd birds-200-2011 dataset: CNS-TR-2010-001[R]. California: California Institute of Technology, 2011. [10] KRAUSE J, STARK M, JIA D, et al. 3D object representations for fine-grained categorization[C]//2013 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE Press, 2013: 554-561. [11] BAKKER B, HESKES T. Task clustering and gating for Bayesian multitask learning[J]. Journal of Machine Learning Research, 2004, 4(1): 83-99. [12] BAXTER J. A model of inductive bias learning[J]. Journal of Artificial Intelligence Research, 2000, 12: 149-198. [13] COLLOBERT R, WESTON J. A unified architecture for natural language processing: Deep neural networks with multitask learning[C]//Proceedings of the 25th international conference on Machine learning-ICML’08. New York: ACM Press, 2008: 160-167. [14] EATON E, DESJARDINS M, LANE T. Modeling transfer relationships between learning tasks for improved inductive transfer[C]//Machine Learning and Knowledge Discovery in Databases, 2008. [15] LIANG Y X, LIU L B, XU Y, et al. Multi-task GLOH feature selection for human age estimation[C]//2011 18th IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2011: 565-568. [16] DUONG L, COHN T, BIRD S, et al. Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 845-850. [17] YANG Y X, HOSPEDALES T M. Trace norm regularised deep multi-task learning[DB/OL]. arXiv preprint: 1606.04038, 2016. [18] 余少勇. 基于深度学习的车辆检测及其细粒度分类关键技术研究[D]. 厦门: 厦门大学, 2017: 1-12. YU S Y. Research on key technologies of vehicle detection and its fine-grained classification based on deep learning[D]. Xiamen: Xiamen University, 2017: 1-12(in Chinese). [19] XIE S N, YANG T B, WANG X Y, et al. Hyper-class augmented and regularized deep learning for fine-grained image classification[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2015: 2645-2654. [20] ZHANG X F, ZHOU F, LIN Y Q, et al. Embedding label structures for fine-grained feature representation[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2016: 1114-1123. [21] 王崇屹. 基于多任务学习的车辆重识别系统研究与实现[D]. 成都: 电子科技大学, 2019: 20-49. WANG C Y. Research and implementation of vehicle Re-identification system based on multi-task learning[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 20-49(in Chinese). [22] 姚乐炜. 基于深度学习的行人重识别算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 28-40. YAO L W. Research on person Re-identification based on deep learning methods[D]. Harbin: Harbin Institute of Technology, 2018: 28-40(in Chinese). [23] CHEN W H, CHEN X T, ZHANG J G, et al. A multi-task deep network for person Re-identification[DB/OL]. arXiv preprint: 1607.05369, 2016. [24] WANG C, ZHANG Q, HUANG C, et al. Mancs: A multi-task attentional network with curriculum sampling for person Re-identification[C]//Computer Vision-ECCV 2018, 2018. [25] FU Y, LI X T, YE Y M. A multi-task learning model with adversarial data augmentation for classification of fine-grained images[J]. Neurocomputing, 2020, 377: 122-129. [26] CHEN Y, BAI Y L, ZHANG W, et al. Destruction and construction learning for fine-grained image recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2019: 5152-5161. [27] LIN Y T, ZHENG L, ZHENG Z D, et al. Improving person re-identification by attribute and identity learning[J]. Pattern Recognition, 2019, 95: 151-161. [28] TANG Z, NAPHADE M, BIRCHFIELD S, et al. PAMTRI: Pose-aware multi-task learning for vehicle Re-identification using highly randomized synthetic data[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2019: 211-220. [29] GEBRU T, HOFFMAN J, LI F F. Fine-grained recognition in the wild: A multi-task domain adaptation approach[C]//2017 IEEE International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2017: 1358-1367. [30] 庄培钦. 基于深度学习的细粒度图像识别方法研究[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2019: 15-39. ZHUANG P Q. A study on fine-grained image recognition with deep learning methods[D]. Shenzhen: Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, 2019: 15-39(in Chinese). [31] 孟宇. 基于深度学习的车辆细分类研究[D]. 徐州: 中国矿业大学, 2018: 15-39. MENG Y. Research on fine-grained vehicle classification based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2018: 15-39(in Chinese). [32] 陈娜. 交通监控视频中车辆重识别技术研究与实现[D]. 北京: 北京邮电大学, 2019: 17-40. CHEN N. Research and implementation of vehicle Re-identification in traffic monitoring video[D]. Beijing: Beijing University of Posts and Telecommunications, 2019: 17-40(in Chinese). [33] BERG T, LIU J X, LEE S W, et al. Birdsnap: Large-scale fine-grained visual categorization of birds[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 2019-2026. [34] MAJI S, RAHTU E, KANNALA J, et al. Fine-grained visual classification of aircraft[DB/OL]. arXiv preprint: 1306.5151, 2013. [35] ZHANG N, DONAHUE J, GIRSHICK R, et al. Part-based R-CNNs for fine-grained category detection[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 834-849. [36] HUANG S L, XU Z, TAO D C, et al. Part-stacked CNN for fine-grained visual categorization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2016: 1173-1182. [37] PENG Y X, HE X T, ZHAO J J. Object-part attention model for fine-grained image classification[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1487-1500. [38] FU J L, ZHENG H L, MEI T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2017: 4476-4484. [39] RODRÍGUEZ P, GONFAUS J M, CUCURULL G, et al. Attend and rectify: A gated attention mechanism for fine-grained recovery[C]//Computer Vision-ECCV 2018, 2018. [40] ZHAO B, WU X, FENG J S, et al. Diversified visual attention networks for fine-grained object classification[J]. IEEE Transactions on Multimedia, 2017, 19(6): 1245-1256. [41] ZHENG H L, FU J L, MEI T, et al. Learning multi-attention convolutional neural network for fine-grained image recognition[C]//2017 IEEE International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2017: 5219-5227. [42] LAYNE R, HOSPEDALES T, GONG S G. Re-id: Hunting attributes in the wild[C]//Proceedings of the British Machine Vision Conference 2014, 2014. [43] 丁乐乐. 基于深度学习和强化学习的车辆定位与识别[D]. 成都: 电子科技大学, 2016: 1-20. DING L L. Vehicle location and identification based on deep learning and reinforcement learning[D]. Chengdu: University of Electronic Science and Technology of China, 2016: 1-20(in Chinese). [44] 熊祎. 基于深度学习的车辆型号识别[D]. 武汉: 华中科技大学, 2014: 5-13. XIONG Y. Vehicle type recognition based on deep learning[D]. Wuhan: Huazhong University of Science and Technology, 2014: 5-13(in Chinese). [45] 张飞云. 基于深度学习的车辆定位及车型识别研究[D]. 镇江: 江苏大学, 2016: 10-21. ZHANG F Y. Car detection and vehicle type classification based on deep learning[D]. Zhenjiang: Jiangsu University, 2016: 10-21(in Chinese). [46] ZHENG H L, FU J L, MEI T, et al. Learning multi-attention convolutional neural network for fine-grained image recognition[C]//2017 IEEE International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2017: 5219-5227. [47] LI W, ZHU X T, GONG S G. Person Re-identification by deep joint learning of multi-loss classification[DB/OL]. arXiv preprint: 1705.04724, 2017. [48] LI W, ZHU X T, GONG S G. Harmonious attention network for person Re-identification[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 2285-2294. [49] WANG F Q, ZUO W M, LIN L, et al. Joint learning of single-image and cross-image representations for person Re-identification[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2016: 1288-1296. [50] DAI P Y, JI R R, WANG H B, et al. Cross-modality person Re-identification with generative adversarial training[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018: 2. [51] SIMON M, RODNER E. Neural activation constellations: Unsupervised part model discovery with convolutional networks[C]//2015 IEEE International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2015: 1143-1151. [52] ZHANG X P, XIONG H K, ZHOU W G, et al. Picking deep filter responses for fine-grained image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2016: 1134-1142. [53] LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]//2015 IEEE International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2015: 1449-1457. [54] XIAO T J, XU Y C, YANG K Y, et al. The application of two-level attention models in deep convolutional neural network for fine-grained image classification[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2015: 842-850. [55] LIAO S C, HU Y, ZHU X Y, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2015: 2197-2206. [56] MATSUKAWA T, OKABE T, SUZUKI E, et al. Hierarchical Gaussian descriptor for person re-identification[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2016: 1363-1372. [57] KVIATKOVSKY I, ADAM A, RIVLIN E. Color invariants for person reidentification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(7): 1622-1634. [58] XIAO T, LI H S, OUYANG W L, et al. Learning deep feature representations with domain guided dropout for person re-identification[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2016: 1249-1258. [59] AHMED E, JONES M, MARKS T K. An improved deep learning architecture for person re-identification[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2015: 3908-3916. [60] YANG Z, LUO T G, WANG D, et al. Learning to navigate for fine-grained classification[M]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 438-454. [61] DING S Y, LIN L, WANG G R, et al. Deep feature learning with relative distance comparison for person re-identification[J]. Pattern Recognition, 2015, 48(10): 2993-3003. [62] YI D, LEI Z, LIAO S C, et al. Deep metric learning for person Re-identification[C]//2014 22nd International Conference on Pattern Recognition. Piscataway: IEEE Press, 2014: 34-39. [63] ZHANG R M, LIN L, ZHANG R, et al. Bit-scalable deep hashing with regularized similarity learning for image retrieval and person Re-identification[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2015, 24(12): 4766-4779. [64] LIU S, LIANG X D, LIU L Q, et al. Matching-CNN meets KNN: Quasi-parametric human parsing[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2015: 1419-1427. [65] CHEN S Z, GUO C C, LAI J H. Deep ranking for person Re-identification via joint representation learning[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2016, 25(5): 2353-2367. [66] MISRA I, SHRIVASTAVA A, GUPTA A, et al. Cross-stitch networks for multi-task learning[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2016: 3994-4003. [67] GAO S, WANG J Y, LU H C, et al. Pose-guided visible part matching for occluded person ReID[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2020: 11741-11749. |