[1] LIOU J C, JOHNSON N L. Risks in space from orbiting debris[J]. Science, 2006, 311(5759):340-341. [2] LIOU J C, SHOOTS D. Space missions and satellite box score[J]. Orbital Debris Quarterly News, 2014, 18(2):10. [3] LIOU J C. Engineering and technology challenges for active debris removal[J]. Progress in Propulsion Physics, 2013, 4:735-748. [4] KESSLER D J, JOHNSON N L, LIOU J, et al. The Kessler syndrome:Implications to future space operations[J]. Advances in the Astronautical Sciences, 2010, 137(8):2010. [5] LIOU J C, KRISKO P. An update on the effectiveness of Postmission disposal in LEO[C]//64th International Astronautical Congress. Amsterdam:Elsevier, 2013:23-27. [6] LIOU J C. An active debris removal parametric study for LEO environment remediation[J]. Advances in Space Research, 2011, 47(11):1865-1876. [7] 曹喜滨, 李峰, 张锦绣, 等. 空间碎片天基主动清除技术发展现状及趋势[J]. 国防科技大学学报, 2015(4):117-120. CAO X B, LI F, ZHANG J X, et al. Development status and tendency of active debris removal[J]. Journal of National University of Defense Technology, 2015(4):117-120(in Chinese). [8] 王成林, 张艳, 王鲲鹏. 地基激光清除空间碎片的策略[J]. 北京航空航天大学学报, 2015, 41(11):2137-2143. WANG C L, ZHANG Y, WANG K P. Strategy of removing space debris using ground-based lasers[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):2137-2143(in Chinese). [9] BRAUN V, L PKEN A, FLEGEL S, et al. Active debris removal of multiple priority targets[J]. Advances in Space Research, 2013, 51(9):1638-1648. [10] BEREND N, OLIVE X. Bi-objective optimization of a multiple-target active debris removal mission[J]. Acta Astronautica, 2016, 122:324-335. [11] LIU Y, YANG J. A multi-objective planning method for multi-debris active removal mission in LEO[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2017:1733. [12] LIU Y, YANG J, WANG Y, et al. Multi-objective optimal preliminary planning of multi-debris active removal mission in LEO[J]. Science China Information Sciences, 2017, 60(7):072202. [13] YANG J, HU Y H, LIU Y, et al. A maximal-reward preliminary planning for multi-debris active removal mission in LEO with a greedy heuristic method[J]. Acta Astronautica, 2018, 149:123-142. [14] CERF M. Multiple space debris collecting mission:Optimal mission planning[J]. Journal of Optimization Theory and Applications, 2015, 167(1):195-218. [15] BARBEE B W, ALFANO S, PINON E, et al. Design of spacecraft missions to remove multiple orbital debris objects[C]//IEEE Aerospace Conference. Piacataway:IEEE Press, 2011:1-14. [16] CERF M. Multiple space debris collecting mission debris selection and trajectory optimization[J]. Journal of Optimization Theory and Applications, 2013, 156(3):761-796. [17] SHEN H X, ZHANG T J, CASALINO L, et al. Optimization of active debris removal missions with multiple targets[J]. Journal of Spacecraft and Rockets, 2018, 55(1):181-189. [18] YU J, CHEN X Q, CHEN L H. Optimal planning of LEO active debris removal based on hybrid optimal control theory[J]. Advances in Space Research, 2015, 55(11):2628-2640. [19] ZUIANI F, VASILE M. Preliminary design of debris removal missions by means of simplified models for low-thrust, many-revolution transfers[J]. International Journal of Aerospace Engineering, 2012:836250. [20] YU J, CHEN X Q, CHEN L H, et al. Optimal scheduling of GEO debris removing based on hybrid optimal control theory[J]. Acta Astronautica, 2014, 93(1):400-409. [21] MADAKAT D, MORIO J, VANDERPOOTEN D. Biobjective planning of an active debris removal mission[J]. Acta Astronautica, 2013, 84:182-188. [22] OLYMPIO J T, FROUVELLE N. Space debris selection and optimal guidance for removal in the SSO with low-thrust propulsion[J]. Acta Astronautica, 2014, 99:263-275. [23] STUART J, HOWELL K, WILSON R. Application of multi-agent coordination methods to the design of space debris mitigation tours[J]. Advances in Space Research, 2016, 57(8):1680-1697. [24] IZZO D, GETZNER I, HENNES D, et al. Evolving solutions to tsp variants for active space debris removal[C]//Annual Conference on Genetic and Evolutionary Computation. New York:ACM, 2015:1207-1214. [25] MERETA A, IZZO D, WITTIG A. Machine learning of optimal low-thrust transfers between near-earth objects[C]//International Conference on Hybrid Artificial Intelligence Systems. Asturias:Gijon, 2017:543-553. [26] IZZO D, TAILOR D, VASILEIOU T. On the stability analysis of optimal state feedbacks as represented by deep neural models[DB/OL]. arXiv preprint:1812.02532,2018. [27] 刘冰雁, 叶雄兵, 周赤非, 等. 基于改进DQN的复合模式在轨服务资源分配[J]. 航空学报, 2020, 41(5):323630. LIU B Y, YE X B, ZHOU C F, et al. Allocation of composite mode on-orbit service resource based on improved DQN[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):323630(in Chinese). [28] 左家亮, 杨任农, 张滢, 等. 基于启发式强化学习的空战机动智能决策[J]. 航空学报, 2017, 38(10):321168. ZUO J L, YANG R N, ZHANG Y, et al. Intelligent decision-making in air combat maneuvering based on heuristic reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):321168(in Chinese). [29] 相晓嘉, 闫超, 王菖, 等. 基于深度强化学习的固定翼无人机编队协调控制方法[J]. 航空学报, 2021, 42(4):524009 XIANG X J, YAN C, WANG C, et al. Towards coordination control for fixed-wing UAV formation through deep reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524009(in Chinese). [30] 赵毓, 管公顺, 郭继峰, 等. 基于多智能体强化学习的空间机械臂轨迹规划[J]. 航空学报, 2021, 42(4):524151. ZHAO Y, GUAN G S, GUO J F, et al. Trajectory planning of space manipulator based on multi-agent reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524151(in Chinese). [31] BIANCHI R A, RIBEIRO C H, COSTA A H. On the relation between ant colony optimization and heuristically accelerated reinforcement learning[C]//1st International Workshop on Hybrid Control of Autonomous System. Pasadena, 2009:49-55. [32] WANG Z, CHEN C, LI H X, et al. A novel incremental learning scheme for reinforcement learning in dynamic environments[C]//Intelligent Control and Automation. Piscataway:IEEE Press, 2016:2426-2431. [33] AYDIN M E, FELLOWS R. A reinforcement learning algorithm for building collaboration in multi-agent systems[DB/OL]. arXiv preprint:1711.10574,2017. [34] KOBER J, BAGNELL J A, PETERS J. Reinforcement learning in robotics:A survey[J]. The International Journal of Robotics Research, 2013, 32(11):1238-1274. [35] BUSONIU L, BABUSKA R, SCHUTTER B D. A comprehensive survey of multiagent reinforcement learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2008, 38(2):156-172. [36] MUKHOPADHYAY S, TILAK O, CHAKRABARTI S. Reinforcement learning algorithms for uncertain, dynamic, zero-sum games[C]//17th IEEE International Conference on Machine Learning and Applications (ICMLA). Piscataway:IEEE Press, 2018:48-54. [37] KIUMARSI B, LEWIS F L, MODARES H, et al. Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics[J]. Automatica, 2014, 50(4):1167-1175. [38] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676):354-359. [39] ANSELMO L, PARDINI C. Ranking upper stages in low Earth orbit for active removal[J]. Acta Astronautica, 2016, 122:19-27. [40] 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1):1-27. LIU Q, ZHAI J W, ZHANG Z C, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1):1-27(in Chinese). [41] 唐振韬. 深度强化学习进展:从AlphaGo到AlphaGo Zero[J]. 控制理论与应用, 2017, 34(12):1529-1546. TANG Z T. Recent progress of deep reinforcement learning:From AlphaGo to AlphaGo Zero[J]. Control Theory & Applications, 2017, 34(12):1529-1546(in Chinese). [42] BROWNE C B, POWLEY E, WHITEHOUSE D, et al. A survey of Monte Carlo tree search methods[J]. IEEE Transactions on Computational Intelligence and AI in Games, 2012, 4(1):1-43. [43] WATKINS C J C H, DAYAN P. Technical note:Q-learning[J]. Machine Learning, 1992, 8(3-4):279-292. |