[1] 田方宝. 模拟生物运动的流固耦合数值研究[D]. 合肥:中国科学技术大学, 2011:1-5. TIAN F B. Numerical investigation of bio-inspired flow-structure interaction[D]. Hefei:University of Science and Technology of China, 2011:1-5(in Chinese).
[2] POIREL D, METIVIER V, DUMAS G. Computational aeroelastic simulations of self-sustained pitch oscillations of a NACA0012 at transitional Reynolds numbers[J]. Journal of Fluids and Structures, 2011, 27(8):1262-1277.
[3] LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):1-21.
[4] VAN DE VOOREN A I, BERGH H. Spontaneous oscillations of an aerofoil due to instability of the laminar boundary layer[R]. Amsterdam:National Luchtvaart Laboratorium, 1951.
[5] LAMBOURNE N C. An experimental investigation on the flutter characteristics of a model flying wing[R]. London:Her Majesty's Stationery Office, 1952.
[6] SHYY W, LIAN Y S, TANG J, et al. Aerodynamics of low Reynolds number flyers[M]. Cambridge:Cambridge University Press, 2008:29-45.
[7] POIREL D, HARRIS Y, BENAISSA A. Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers[J]. Journal of Fluids and Structures, 2008, 24(5):700-719.
[8] WANG B Y, POIREL D, YUAN W X, et al. Numerical simulation of self-sustained oscillations of an airfoil at a transitional Reynolds number using high-order schemes:AIAA-2011-2139[R]. Reston, VA:AIAA, 2011.
[9] YUAN W X, POIREL D, WANG B Y, et al. Simulation of airfoil limit-cycle oscillations of transitional Reynolds numbers:AIAA-2012-0041[R]. Reston, VA:AIAA, 2012.
[10] YUAN W X, POIREL D, WANG B Y. Simulations of pitch-heave limit-cycle oscillations at a transitional Reynolds number[J]. AIAA Journal, 2013, 51(7):1-17.
[11] METIVIER V, DUMAS G, POIREL D. Aeroelastic dynamics of a NACA 0012 airfoil at transitional Reynolds numbers[C]//AIAA Fluid Dynamics Conference. Reston, VA:AIAA, 2013.
[12] LAPOINTE S, DUMAS G. Improved numerical simulations of self-sustained oscillations of a NACA0012 with transition modeling[C]//AIAA Fluid Dynamics Conference & Exhibit. Reston, VA:AIAA, 2013.
[13] 吴钦,王国玉,黄彪. 绕振荡水翼流动及其转捩特性的数值计算研究[J]. 力学学报, 2014, 46(1):1-10. WU Q, WANG G Y, HUANG B. Numerical methods and transition investigation of transient flows around a pitching hydrofoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1):1-10(in Chinese).
[14] YUAN W X, POIREL D, WANG B Y, et al. Effect of freestream turbulence on airfoil limit-cycle oscillations at transitional Reynolds numbers[J]. Journal of Aircraft, 2015, 52(4):1-12.
[15] 乔磊. 考虑转捩判定的分离流动数值模拟研究[D]. 西安:西北工业大学,2013:1-20. QIAO L. Numerical simualtion of separation flow incorporating transition modeling[D]. Xi'an:Northwestern Polytechnical University, 2013:1-20(in Chinese).
[16] MENTER F R, LANGTRY R B, LIKKI S R, et al. Correlation-based transition model using local variables, Part I-Model Formulation[C]//Proceedings of ASME Turbo Expo 2004, Power for Land, Sea, and Air. New York:ASME, 2004.
[17] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:University Stuttgart, 2006:1-80.
[18] 叶正寅, 张伟伟, 史爱明, 等. 流固耦合力学基础及其应用[M]. 哈尔滨:哈尔滨工业大学出版社, 2010:171-173. YE Z Y, ZHANG W W, SHI A M, et al. Fundamentals of fluid-structure coupling and its application[M]. Harbin:Harbin Institute of Technology Press, 2010:171-173(in Chinese).
[19] MOHAMMED A A, WAQAR A, ERWIN S, et al. A review on aerodynamics of non-flapping bird wings[J]. Journal of Aerospace Technology & Management, 2016, 8(1):8-17.
[20] SHYY W, LIAN Y, TANG J, et al. Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications[J]. Acta Mechanica Sinica, 2008, 24(4):351-373.
[21] 杨文青, 宋笔锋, 宋文萍, 等. 仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战[J]. 实验流体力学, 2015, 29(3):1-10. YANG W Q, SONG B F, SONG W P, et al. The progress and challenges of aerodynamics in the bionic flapping-wing micro air vehicle[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):1-10(in Chinese). |