[1] Hou G Q. The development of the wide-chord hollow fan blade manufacturing process[J]. Aviation Engineering & Maintenance, 1994(5): 6-8 (in Chinese). 侯冠群. 宽弦空心风扇叶片制造工艺的发展[J]. 航空制造工程, 1994(5): 6-8.
[2] Liang C H. Overview of advanced fan and compressor blade/vane in high performance aeroengine[J]. Aeroengine, 2006, 32(3): 48-52 (in Chinese). 梁春华. 高性能航空发动机先进风扇和压气机叶片综述[J]. 航空发动机, 2006, 32(3): 48-52.
[3] Liu J F. Fan blade of turbofan and its forming technology[J]. Aeronautical Manufacturing Technology, 1999(2): 21-22 (in Chinese). 刘家富. 涡扇发动机风扇叶片及其成形工艺[J]. 航空工艺技术, 1999(2): 21-22.
[4] Zhao B, Li Z Q, Hou H L, et al. Three dimensional FEM simulation of titanium hollow blade forming process[J]. Rare Metal Materials and Engineering, 2010, 39(6): 963-968.
[5] Xun Y W, Tan M J. Applications of superplastic forming and diffusion bonding to hollow engine blades[J]. Journal of Materials Processing Technology, 2000, 99(1): 80-85.
[6] Gao Q F. Research and application of numerical simulation of superplastic forming hollow fan blades[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008 (in Chinese). 高庆峰. 宽弦空心风扇叶片超塑成形的数值仿真研究[D]. 南京: 南京航空航天大学, 2008.
[7] Ding J G, Hu J, Cai X X. Design and core and bypass numerical simulation of a compound swept fan[J]. Journal of Aerospace Power, 2009, 24(3): 626-633 (in Chinese). 丁建国, 胡骏, 蔡显新. 某复合掠形风扇设计与内外函数值模拟研究[J]. 航空动力学报, 2009, 24(3): 626-633.
[8] Chen M Z, Liu B J, Fan/compressor aero design technology for high bypass ratio turbofan[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 513-526 (in Chinese). 陈懋章, 刘宝杰. 大涵道比涡扇发动机风扇/压气机气动设计技术分析[J]. 航空学报, 2008, 29(3): 513-526.
[9] Lv Y M, Shao R, Teng S X. Design of turbine blade forging die based on numerical simulation[J]. Hot Working Technology, 2011, 40(21): 194-199 (in Chinese). 吕彦明, 邵燃, 滕树新. 基于数值模拟的汽轮机叶片锻模设计[J]. 热加工工艺, 2011, 40(21): 194-199.
[10] Xu Z G. Key manufacture technologies of high-bypass ratio turbofan aeroengine[J]. Aeronautical Manufacturing Technology, 2009(2): 44-47 (in Chinese). 徐志刚. 高涵道比涡扇发动机的关键制造技术[J]. 航空制造技术, 2009(2): 44-47.
[11] Zheng W W, Wu K J. Theory of machines and mechanisms [M]. 7th ed. Beijing: Higher Education Press, 1996: 88-92 (in Chinese). 郑文纬, 吴克坚. 机械原理[M]. 7版. 北京: 高等教育出版社, 1996: 88-92.
[12] Li Y Q, Lin Z R, Chen C K, et al. Titanium metal forming technology[M]. Beijing: National Defense Industry Press, 1986: 54-58 (in Chinese). 理有亲, 林兆荣, 陈春奎, 等. 钛板冲压成形技术[M]. 北京: 国防工业出版社, 1986: 54-58.
[13] Cai Y. Research on superplastic tensile mechanical properties and microstructural evolution of TC4 titanium alloy at high temperature[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese). 蔡云. TC4 钛合金高温拉伸力学性能研究和组织演变[D]. 南京: 南京航空航天大学, 2009.
[14] Lin Z R, Xiong Z Q. Short-term stress relaxation of the sheet TA2、TC1、TC4 in high temperature[J]. Rare Metal Materials and Engineering, 1983(6): 1-7 (in Chinese). 林兆荣, 熊志卿. TA2、TC1、TC4钛板高温短时应力松弛的研究[J]. 稀有金属材料与工程, 1983(6): 1-7.
[15] Liu Y, Yin Z D, Zhu J C. Effects of temperature, stress and grain size on stress relaxation in the alloy TC4[J]. Rare Metal Materials and Engineering, 2003, 32(8): 643-646 (in Chinese). 刘勇, 尹钟大, 朱景川. 温度、应力及晶粒度对TC4合金应力松弛性能的影响[J]. 稀有金属材料与工程, 2003, 32(8): 643-646.
[16] Zhou K, Wang Z W, Shi Z B, et al. Research on oxidation behavior of 2520 stainless steel at high temperature[J]. Engineering Journal of Wuhan University, 2011, 44(6): 783-786 (in Chinese). 周奎, 王志武, 石振斌, 等. 2520不锈钢的高温氧化行为研究[J]. 武汉大学学报(工学版), 2011, 44(6), 783-786.
[17] Hu S G, Chen H Z, Li D S, et al. Engineering analysis of sheet metal forming[M]. Beijing: Beihang University Press, 2009: 182-185 (in Chinese). 胡世光, 陈鹤峥, 李东升, 等. 钣料冷压成形的工程解析[M]. 北京: 北京航空航天大学出版社, 2009: 182-185. |