[1] Ho Y C, Lee R C K. A Bayesian approach to problems in stochastic estimation and control. IEEE Transactions on Automatic Control, 1964, 9(4): 333-339.[2] Stone C J. A course in probability and statistics. Belmont: Duxbury Press, 1996.[3] Jazwinski A H. Stochastic processes and filtering theory. New York: Academic Press, 1970.[4] Simon D. Optimal state estimation: Kalman, H∞ and nonlinear approaches. New York: John Wiley & Sons, Inc., 2006.[5] Bell B M, Cathey F W. The iterated Kalman filter update as a Gauss-Newton method. IEEE Transactions on Automatic Control, 1993, 38(2): 294-297.[6] Galkowski P J, Islam M A. An alternative derivation of modified gain function of Song and Speyer. IEEE Transactions on Automatic Control, 1991, 36(11): 1323-1326.[7] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422.[8] Ito K, Xiong KQ. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927.[9] Arasaratnam I, Haykin S, Elliott R J. Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature. Proceedings of the IEEE, 2007, 95(5): 953-977.[10] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 1254- 1269.[11] Huang J J, Zhong J L, Jiang F. A CKF based spatial alignment of radar and infrared sensors. 2010 IEEE 10th International Conference on Signal Processing, 2010: 2386-2390.[12] Liu J, Cai B G, Tang T, et al. A CKF based GNSS/INS train integrated positioning method. 2010 International Conference on Mechatronics and Automation, 2010: 1686-1689.[13] Pesonen H, Piché R. Cubature-based Kalman filters for positioning. 2010 7th Workshop on Positioning Navigation and Communication, 2010: 45-49.[14] Mu J, Cai Y L, Zhang J M. Square root cubature particle filter. Advanced Materials Research, 2011, 219-220: 727-731.[15] Rasmussen C E, Williams C K I. Gaussian processes for machine learning. Cambridge: MIT Press, 2006: 7-31.[16] Ko J, Fox D. GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models. Automomous Robots, 2009, 27(1): 75-90.[17] Gregorcˇicˇ G, Lightbody G. Gaussian processes for modelling of dynamic non-linear systems. Proceedings of the Irish Signals and Systems Conference, 2002: 141-147.[18] Ni W D, Tan S K, Ng W J, et al. Moving-window GPR for nonlinear dynamic system modeling with dual updating and dual preprocessing. Industrial and Engineering Chemistry Research, 2012, 51(18): 6416-6428.[19] Ferris B, Haehnel D, Fox D. Gaussian processes for signal strength-based location estimation. Proceedings of the International Conference on Robotics, Science and Systems, 2006.[20] Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with applications to tracking and navigation. New York: John Wiley & Sons, Inc., 2001.[21] Middlebrook D L. Bearing-only tracking automation for a single unmanned underwater vehicle. Cambridge: Department of Mechanical Engineering, Massachusetts Institute of Technology, 2009. |