[1] 徐贵力, 程月华, 沈春林. 基于激光扫描和计算机视觉的无人机全天侯自主着陆导引技术[J]. 航空学报, 2004, 25(5):499-503. XU G L, CHENG Y H, SHEN C L. Unmanned air vehicle's navigation and automatic accurate landing in all weather based on infrared laser scan and computer vision[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5):499-503. [2] FORSTER C, PIZZOLI M, SCARAMUZZA D. SVO:Fast semi-direct monocular visual odometer[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2014:15-22(in Chinese). [3] 张广军, 周富强. 基于双圆特征的无人机着陆位置姿态视觉测量方法[J]. 航空学报, 2005, 26(3):344-348. ZHANG G J, ZHOU F Q. Position and orientation estimation method for landing of unmanned aerial vehicle with two circle based computer vision[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3):344-348(in Chinese). [4] YANG S, SCHERER S A, ZELL A. An on-board monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle[J]. Journal of Intelligent & Robotic Systems, 2013, 69(1-4):499-515. [5] 张咪, 赵勇, 布树辉. 等. 基于阶层标识的无人机自主精准降落系统[J]. 航空学报, 2018, 39(10):213-221. ZHANG M, ZHAO Y, BU S H, et al. Multilevel marker based autonomous landing system for UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):213-221(in Chinese). [6] BI Y, DUAN H. Implementation of autonomous visual tracking and landing for a low-cost quadrotor[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(18):3296-3300. [7] BENAVIDEZ P, LAMBERT J, JAIMES A, et al. Landing of an ardrone 2.0 quadcopter on a mobile base using fuzzy logic[C]//World Automation Congress. Piscataway, NJ:IEEE Press, 2014:803-812. [8] KYRISTSIS S, ANTONOPOULOS A, CHANIALAKIS T, et al. Towards autonomous modular UAV missions:The detection, geo-location and landing paradigm[J]. Sensors, 2016, 16(11):1844. [9] ACUNA R, WILLERT V. Dynamic markers:UAV landing proof of concept[C]//2018 Latin American Robotic Symposium, 2018:496-502. [10] LARSEN T D, HANSEN K L, ANDERSEN N A, et al. Design of Kalman filters for mobile robots; evaluation of the kinematic and odometric approach[C]//International Conference on Control Applications. Piscataway, NJ:IEEE Press, 1999:1021-1026. [11] FALANGA D, ZANCHETTIN A, SIMOVIC A, et al. Vision-based autonomous quadrotor landing on a moving platform[C]//International Symposium on Safety, Security and Rescue Robotics. Piscataway, NJ:IEEE Press, 2017. [12] BONATO V, MARQUES E, CONSTANTINIDES G. A floating-point extended Kalman filter implementation for autonomous mobile robots[C]//2007 International Conference on Field Programmable Logic and Applications, 2007:576-579. [13] WANG X, LU G, SHI Z, et al. Robust LQR controller for landing unmanned helicopters on a slope[C]//Chinese Control Conference, 2016:10639-10644. [14] MUELLER M W, HEHN M, D'ANDREA R A. Computationally efficient motion primitive for quadrocopter trajectory generation[J]. IEEE Transactions on Robotics, 2017, 31(6):1294-1310. [15] RICHTER C, BRY A, ROY N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments[M]. Robotics Research. Benin:Springer International Publishing, 2016:649-666. [16] ROTH D B G. Adaptive thresholding using the integral image[J]. Journal of Graphics Gpu & Game Tools, 2007, 12(2):13-21. [17] LEPETIT V, MORENO-NOGUER F, FUA P. EPnP:An accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 2009, 81(2):155-166. [18] GONALVES J, LIMA J, COSTA P. Real time tracking of an omnidirectional robot-an extended Kalman filter approach[C]//Proceedings of the Fifth International Conference on Informatics in Control, 2015:5-10. [19] LYNEN S, ACHTELIK M W, WEISS S, et al. A robust and modular multi-sensor fusion approach applied to MAV navigation[C]//International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2013, 3923-3929. [20] OLEYNIKOVA H, BURRI M, TAYLOR Z, et al. Continuous-time trajectory optimization for online UAV re-planning[C]//International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2016. [21] XING B Y, ZHU Q, PAN F, et al. Marker-based multi-sensor fusion indoor localization system for micro air vehicles[J]. Sensors, 2018, 18(6):1706. |