Acta Aeronautica et Astronautica Sinica
Previous Articles Next Articles
Received:2025-12-08
Revised:2025-12-29
Online:2026-02-03
Published:2026-02-03
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://hkxb.buaa.edu.cn/EN/10.7527/S1000-6893.2025.33203
| [1]郭建亭. 高温合金材料学[M].科学出版社, 2008.GUO J T. Materials science of Superalloys[M].Science Press, 2008 (in Chinese).[2]杜昆,陈麒好,孟宪龙,等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展[J]. 推进技术, 2022,43(2): 113-131.DU K, CHEN L H, MENG X L, et al. Advancement in application and thermal analysis of ceramic matrix composites in aeroengine hot components[J]. Journal of Propulsion Technology,2022,43(2):113-131 (in Chinese).[3]陈荣章. 单晶高温合金发展现状[J]. 材料工程,1995(8):10CHEN R Z. Development Status of single crystal superalloys[J]. Journal of Materials Engineering,1995(8):10 (in Chinese).[4]Reed R C, Tao T, Warnken N. Alloys-By-Design: Application to nickel-based single crystal superalloys[J]. Acta Materialia, 2009, 57(19): 5898-5913.[5]Pierre Caron, Tasadduq Khan. Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerospace Science and Technology,1999,3(8):513-523[6]孙晓峰,金涛,周亦胄,等. 镍基单晶高温合金研究进展[J]. 中国材料进展,2012,31(12):1-11.SUN X F,JIN T,ZHOU Y Z,et al. Research Progress of Nickel-Base Single Crystal Superalloys[J]. Materials China,2012,31(12):1-11 (in Chinese).[7]Fink, P.J., Miller, J.L. & Konitzer, D.G. Rhenium reduction—alloy design using an economically strategic element[J]. JOM,2010,62, 55–57. [8]张少华,王莉,张功,等. 一种无铼低密度高性能镍基单晶高温合金及其热处理工艺:CN201410231844.7[P]. 2018-05-25.ZHANG S H, WANG L, ZHANG G. A rhenium free low density high performance nickel base single crystal superalloy and its heat treatment process: CN201410231844.7[P]. 2018-05-25 (in Chinese).[9]Harada, Hiroshi. High temperature materials for gas turbines : the present and future[C]. Proceedings of the International Gas Turbine Congress.2003 [10]张少华, 姜祥伟, 王莉,等.一种高强抗高温氧化无铼第二代镍基单晶高温合金及其热处理工艺:202011442187.2[P].2021-04-02.ZHANG S H, JIANG X W,WANG L, et al. A high strength rhenium free second generation nickel base single crystal superalloy with high temperature oxidation resistance and its heat treatment process:202011442187.2[P].2021-04-02 (in Chinese).[11]胡壮麒,刘丽荣,金涛,等. 镍基单晶高温合金的发展[J], 航空发动机.2005,(03):1-7.HU Z L,LIU L R,JIN T,et al. Development of the Ni-base single crystal superallys[J], Aeroengine. 2005, (03): 1-7 (in Chinese).[12]杜云玲,牛建平,王新广,等.添加Ru对镍基单晶高温合金组织的影响[J].稀有金属材料与工程,2018,47(04):1248-1253.DU Y L, NIU J P, WANG G X, et al. Effects of Ru Addition on the Microstructures of the Ni-Based Single Crystal Superalloys [J]. Rare Metal Materials and Engineering,2018,47(04):1248-1253 (in Chinese).[13]何利民. 高温防护涂层技术[M].国防工业出版社,2012.HE L M. Hight-temperature protective coating[M]. National Defense Industry Press, 2012 (in Chinese).[14]邢艺锋,尹奥博,耿粒伦,等.单晶合金与防护涂层智能设计进展[J]. 航空材料学报,2024,44(05):70-85.XING Y F,YIN A B,GENG L L,et al. Journal of Aeronautical Materials[J]. 2024,44(05):70-85 (in Chinese).[15]邓鹏.几何约束下PtAl涂层与第四代镍基单晶高温合金界面组织演化及互扩散行为研究[D].广东工业大学,2021.DENG P.Study on the microstructure evolution and interdiffusion behavior of interface between the PtAl coating and the fourth generation nickel-based single crystal superalloy under geometric constraint[D].Guangdong University of Technology,2021 (in Chinese).[16]倪建洋.PtAl涂层与薄壁镍基单晶高温合金界面组织演变及元素互扩散行为研究[D].广东工业大学,2022.Ni J Y. Microstructure evolution and element interdiffusion behavior of interface between PtAl coating and thin-walled single crystal superalloy[D].Guangdong University of Technology,2022 (in Chinese).[17]吴俊杰.抗热腐蚀单晶合金/MCrAlY涂层体系的服役损伤行为与优化控制[D].中国科学技术大学,2021.WU J J. Damage behavior and optimacontrolof the MCrAY-coated hotcorrosion resistant single crystaalloys during long-term service[D].University of Science and Technology of China,2021 (in Chinese).[18]C.M.F. Rae,M.S. Hook,R.C. Reed. The effect of TCP morphology on the development of aluminide coated superalloys[J]MSEA, 2005,396(1-2):231-239[19]李婧晨,赵宗科,郭谦,等.单晶高温合金表面阻扩散涂层研究进展[J].热喷涂技术,2025,17(02):19-30.LI J C, ZHAO Z K, GUO Q, et al. Research progress on diffusion barrier coatings for single-crystal superalloy surfaces[J].Thermal Spray Technology,2025,17(02):19-30 (in Chinese).[20]H.U. Hong, J.G. Yoon, B.G. Choi, I.S. Kim, C.Y. Jo. On the mechanism of secondary reaction zone formation in a coated nickel-based single-crystal superalloy containing ruthenium[J]. Scripta Materialia, 2013, 69(1): 33-36.[21]Walston, W.S., Schaeffer, J.C., Murphy, W.H.. A new type of microstructural instability in superalloys-SRZ[J]. Superalloys,1996, 9-18.[22]Suzuki A S , Kawagishi K , Yokokawa T ,et al. Effect of Cr on microstructural evolution of aluminized fourth generation Ni-base single crystal superalloys[J]. Surface & Coatings Technology, 2012, 206(11-12):2769-2773.[23]Suzuki A S , Rae C M F , Hobbs R A ,et al. Secondary reaction zone formations in pt-aluminised fourth generation ni-base single crystal superalloys[J]. Advanced Materials Research, 2011, 278:78-83.[24]宫声凯,刘原,耿粒伦,等. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(09): 1097-1108.GUO SK,LIU Y,GENG L L,et al. Advances in the regulation and interfacial behavior of coatings/superalloys[J]. Acta Metallurgica Sinica, 2023, 59(09): 1097-1108 (in Chinese).[25]C. Leyens, K, Fritscher et al. Transformation and oxidation of a sputtered low-expansion Ni-Cr-Al-Ti-Si bond coating for thermal barrier systems[J]. Surface & Coatings Technology,1997,94/95:155-160.[26]时龙.几种防护涂层对DD98M合金高温氧化及热腐蚀行为的影响[D].东北大学,2015.SHI L.Influences of several coatings on high temperature oxidation andhot corrosion behaviors of single crystal superalloy DD98M[D]. NortheasternUniversity,2015 (in Chinese).[27]Terada Y , Ohkubo K , Mohri T ,et al. Site preference in NiAl—determination by thermal conductivity measurement[J]. Materials Science & Engineering A, 2002, 329(none):468-473.[28]Shaohua Liu,Chengpeng Liu, Lin Ge. Effect of interactions between elements on the diffusion of solutes in Ni-X-Y systems and γ′-coarsening in model Ni-based superalloys[J]. Scripta materialia, 2017,138:100-104[29]Galiullin T , Chyrkin A , Pillai R ,et al. Effect of alloying elements in Ni-base substrate material on interdiffusion processes in MCrAlY-coated systems[J]. Surface&Coatings Technology, 2018, 350:359-368.[30]Yin B , Xie G , Lou L ,et al. Effect of Ta on microstructural evolution of NiCrAlYSi coated Ni-base single crystal superalloys[J]. Journal of Alloys and Compounds, 2020, 829:154440.[31]Long Shi, Li Xin, Xinyue Wang,et al. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors[J]. Journal of Alloys & Compounds, 2015,649(15):515-530[32]Seiser B , Drautz R , Pettifor D G . TCP phase predictions in Ni-based superalloys: Structure maps revisited[J]. Acta Materialia, 2011, 59(2):749-763.[33]黄太文,卢晶,许瑶,等. Re和Ta对抗热腐蚀单晶高温合金900℃长期时效组织稳定性的影响[J]. 金属学报,2019,55(11):1427-1436.HUANG T W, LU J, XU Y, et al. Effects of Rhenium and Tantalum on Microstructural Stability of hot-corrosion resistant single crystal superalloys aged at 900 ℃[J]. Acta Metallurgica Sinica,2019,55(11):1427-1436 (in Chinese).[34]Aya Suzuki, C. M.F. Rae, M. Yoshida, et al. Secondary reaction zones in coated 4th generation Ni-based blade alloys[C]. 11th International Symposium on Superalloys.United States, CityChampion, 2008.[35]Mollard M, Pedraza F, Bouchaud B, et al. Influence of the superalloy substrate in the synthesis of the Pt-modified aluminide bond coat made by slurry[J]. Surface & Coatings Technology, 2015,270:102-108.[36]P. Kiruthika, S.K. Makineni, C. Srivastava,et al. Growth mechanism of the interdiffusion zone between platinum modified bond coats and single crystal superalloys[J]. Acta materialia, 2017, 122:512-512.[37]Sun, Jing-Yong,Wei, Liang-Liang,Li, Qiu-Shi,et al. Microstructure stability of γ′+β Ni–Al coated single-crystal superalloy N5 annealed at 1100℃[J]. Rare Metals, 2021,40(3):693-700.[38]孙井永,李秋实,郭洪波,等. Ni-Al涂层与单晶合金互扩散行为及其对界面合金组织稳定性的影响[J]. 中国腐蚀与防护学报,2016,36(05):497-504.SUN J Y, LI Q S, GUO H B, et al. Effect of Interdiffusion between Ni-Al coating and substrate on microstructure stability of single crystal superalloy[J]. Journal of Chinese Society for Corrosion and Protection,2016,36(05):497-504 (in Chinese).[39]Fahamsyah H. Latief, Koji Kakehi. Effects of Re content and crystallographic orientation on creep behavior of aluminized Ni-base single crystal superalloys[J]. Materials & Design,2013,49:485-492.[40]H.J. Kim, M.E. Walter. Characterization of the degraded microstructures of a platinum aluminide coating[J]. Materials Science and Engineering: A,2003,360(1-2):7-17.[41]Sallot, P., Maurel, V., Rémy, L. et al. Microstructure evolution of a platinum-modified nickel-aluminide coating during thermal and thermo-mechanical fatigue[J]. Metall Mater Trans A,2015,46, 4589–4600.[42]郑彩凤,郭建云,唐鹏,等. 热力耦合对电弧离子镀NiCoCrAlYHf涂层/镍基单晶高温合金界面组织结构的影响[J]. 电镀与涂饰,2023,42(18):33-42.ZHENG C F, GUO J Y, TANG P, et al. Effect of thermodynamic coupling on microstructure of the interface between arc ion plated NiCoCrAlYHf coating and single-crystal nickel-based superalloy [J]. Electroplating & Finishing, 2023,42(18):33-42 (in Chinese).[43]陶稀鹏.涂层对第二代镍基单晶高温合金组织及性能的影响研究[D].中国科学技术大学,2022.TAO X P.Effect of coating onmicrostructure and propertiesof a second-generation nickelbase single crystal superalloy[D].University of Science and Technology of China,2022 (in Chinese).[44]Latief F H , Kakehi K . Influence of thermal exposure on the creep properties of an aluminized Ni-based single crystal superalloy in different surface orientations[J]. Materials & Design, 2014,56:816-821[45]Lavigne, C. Ramusat, S. Drawin, et al. Relationships between microstructural instabilities and mechanical behaviour in new generation nickel-based single crystal superalloys[C]. Superalloy 2004.[46]董建民,李嘉荣,甄真,等. 渗铝涂层对DD6单晶高温合金疲劳性能的影响[J]. 材料工程,2025,53(01):65-71.DONG J M, LI J R, ZHEN Z, et al. Effect of aluminizing coating on fatigue properties of DD6 single crystal superalloy[J]. Journal of Materials Engineering,2025,53(01):65-71 (in Chinese).[47]F. H. Latief, K. Kakehi, H. Murakami,et al. Influence of crystallographic orientation on creep behavior of aluminized ni-base single crystal superalloys[C]. Superalloys 2012.[48]Sato A, Aoki Y, Arai M, et al. Effect of aluminide coating on creep properties of ni-base single crystal superalloys[J]. Journal of the Japan Institute of Metals, 2007, 71(3): 320-325.[49]Brunner M, Bensch M, V?lkl R,et al. Thickness influence on creep properties for Ni-based superalloy M247LC SX[J]. Materials Science and Engineering:A,2012,550:254-262.[50]Doner M,Heckler J A. Identification of mechanisms responsible for degredation in thin-wall stress-rupture properties[J]. Superalloys 1988.Champion,PA:The Metallurgical Society,1988:653-662.[51]Hüttner, R., V?lkl, R., Gabel, J., et al. Creep Behavior of Thick and Thin Walled Structures of a Single Crystal Nickel-Base Superalloy at High Temperatures - Experimental Method and Results[C]. Superalloys 2008, 719-723.[52]Huettner R , Gabel J , Glatzel U ,et al. First creep results on thin-walled single-crystal superalloys[J]. Materials Science & Engineering A, 2009, 510:307-311.[53]Gong H X , Jiang R , Wang Y ,et al. Influence of film cooling holes and thermal barrier coating on the creep behavior of DD6 single crystal superalloy[J]. Journal of Materials Research and Technology, 2025, 35:6042-6059.[54]Wang Y , Guo H B , Peng H ,et al. Diffusion barrier behaviors of (Ru,Ni)Al/NiAl coatings on Ni-based superalloy substrate[J]. Intermetallics, 2011, 19(2):191-195.[55]Yingfei,Yang,Hongrui,et al. Modification of NiCoCrAlY with Pt: Part I. Effect of Pt depositing location and cyclic oxidation performance[J]. Journal of Materials Science & Technology, 2019, 35(03):115-123.[56]Liu H , Li S , Jiang C Y ,et al. Preparation and oxidation performance of a low-diffusion Pt-modified aluminide coating with Re-base diffusion barrier[J]. Corrosion Science, 2020:108582.[57]Narita T , Thosin K Z , Fengqun L ,et al. Development of Re-based diffusion barrier coatings on nickel based superalloys[J]. Material Corrosion,2005,56(12):923-929.[58]Sumoyama, D., Thosin, K.Z., Nishimoto, T. et al. Formation of a rhenium-base diffusion-barrier-coating system on ni-base single crystal superalloy and its stability at 1423 K[J]. Oxid Met,2007,68:313–329.[59]李伟洲,刘山川,宫骏,等.CrN中间层阻挡元素扩散的能力研究[J]. 航空材料学报,2010,30(02):58-63 (in Chinese).[60]Ren P, Zhu S , Wang F. TEM study of the evolution of sputtered Ni+CrAlYSiHfN nanocomposite coating with an AlN diffusion barrier at high temperature[J]. Surface & Coatings Technology, 2016, 286:262-267.[61]J. Müller, Schierling M , Zimmermann E ,et al. Chemical vapor deposition of smooth α-Al2O3 films on nickel base superalloys as diffusion barriers[J]. Surface & Coatings Technology, 1999, 120–121(1):16-21.[62]Guo C A,Wang W,Cheng Y,et al. Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting[J]. Corrosion Science,2015,94:122-128.[63]Liu Lintao,Li Zhengxian, Yang Chenxi,et al. Interfacial evolution behavior of ZrO2(ZrB2) active diffusion barrier[J]. Rare Metal Materials and Engineering,2018,47(5):1365-1369.[64]刘林涛,李争显,胡祯,等. 镍基合金/NiCrAlY粘结层界面活性扩散障的研究[J]. 材料热处理学报,2016,37(1):93-97.LIU L T, LI Z X, HU Z, et al. Study on an active diffusion barriers between Ni-based alloy and NiCrAlY bond coating interface[J]. Transactions of Materials and Heat Treatment, 2016,37(1):93-97 (in Chinese).[65]许安,杨阳,李伟洲,等. 扩散阻挡层对NiCrAlYSi涂层不同条件下热腐蚀行为的影响[J]. 中南大学学报(自然科学版), 2016,47(03):730-740.XU A, YANG Y, LI WZ, et al. Influence of diffusion barrier on hot corrosion behavior of NiCrAlYSi coating under different test conditions[J]. Journal of Central South University(Science and Technology), 2016,47(03):730-740 (in Chinese).[66]Peng H,Guo H B,Yao R, et al. Improved oxidation resistance and diffusion barrier behaviors of gradient oxide dispersed NiCoCrAlY coatings on superalloy[J]. Vacuum, 2010, 85(5): 627-633.[67]Dongqing Li, Hongbo Guo,Hui Peng,et al. Improved alumina scale adhesion of electron beam physical vapor deposited Dy/Hf-doped β-NiAl coatings[J]. Applied Surface Science,2013,283:513-520.[68]郭洪波,宫声凯,徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009,28(2):18-26.GUO H B, GONG S K, XU H B. Progress in therm al barrier coatings for advanced aeroengines[J]. Materials China, 2009,28(2):18-26 (in Chinese).[69]Czech N , Schmitz F , Stamm W. Microstructural analysis of the role of rhenium in advanced MCrAlY coatings[J]. Surface & Coatings Technology, 1995, 76–77:28-33.[70]Sato A, Harada H, Kawagishi K. Development of a new bond coat “EQ coating” system[J]. Metallurgical and aterials Transactions A,2006,37(3): 789-790.[71]李帅.热障涂层体系铂铝粘结层高温氧化及界面失效机理研究[D].中国科学技术大学,2022.LI S. Research on high temperatureoxidation and interfacial failuremechanism of Pt-modifiedaluminide bond coat for TBCs[D].University of Science and Technology of China,2022 (in Chinese).[72]Mercer C, Kawagishi K, Tomimatsu T,et al. A comparative investigation of oxide formation on EQ (Equilibrium) and NiCoCrAlY bond coats under stepped thermal cycling[J]. Surface and Coatings Technology 2011,205(8-9): 3066-3072.[73]杨兰兰.二代单晶镍基高温合金用纳米晶抗氧化涂层研究[D].中国科学技术大学,2019.YANG L L. Oxidation-resistantnanocrystalline coating forsecond-generation singlecrystal Ni-base superalloy[D].University of Science and Technology of China,2019 (in Chinese).[74]Jinlong Wang, Minghui Chen, Lanlan Yang,et al. Comparative study of oxidation and interdiffusion behavior of AIP NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy[J]. Corrosion Science,2015,98:530-540.[75]Jinlong Wang, Minghui Chen, Yuxian Cheng,et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy[J]. Corrosion Science,2017,123:27-39.[76]Yang L, Chen M, Wang J,et al. A duplex nanocrystalline coating for high-temperature applications on single-crystal superalloy[J]. Corrosion Science, 2016.102:72-83.[77]Wang J, Chen M, Zhu S, et al. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition[J]. Applied Surface Science, 2016,366:245-253. |
| [1] | . Permeability Prediction Method for Ablative Porous Material by Integrating Multi-source Data [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
| [2] | . Bending failure mechanisms and energy absorption design of CFRP C-frames for civil aircraft fuselage [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
| [3] | Zijian XIANG, Zhenyu MA, Xixiang YANG. Inversion of structural performance parameters of composite materials based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(24): 231877-231877. |
| [4] | . One-step electrical explosion preparation of nitrogen-doped graphite and its microwave absorption properties [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
| [5] | Qiuhua LI. Thermal coupling field analysis of thermal barrier coating structure based on Green’s function [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(22): 431764-431764. |
| [6] | Lihong JIANG, Lin ZHU, Zheng LIU. Quasi-in situ electron backscatter diffraction tensile test on deformation mechanisms of laser melting deposited Ti-3Cu alloy [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(22): 431642-431642. |
| [7] | Tianzhen LI, Jingchao WEI, Yong CAO, Jingyu LIU, Yongcun LI, Wenzhi WANG. Mechanism of seawater hydrothermal aging and tensile damage characteristics of composite materials [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(22): 431729-431729. |
| [8] | Ziang LIU, Xitao ZHENG, Yingshi CHEN, Tianze DENG, Weijie MA. Effect of delamination depth on compressive properties of aircraft composite laminates [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(21): 532340-532340. |
| [9] | Kairui TANG, Zhe WANG, Xiangming CHEN, Baorang CUI, Yanhui CHEN, Puhui CHEN. A multi-fidelity data-driven framework for predicting mechanical property distributions of composite structures and its validation [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(21): 532180-532180. |
| [10] | Yubin LU, Xiaohua NIE, Zhen WU. A residual stiffness prediction approach for carbon fiber reinforced composite materials based on interpretable machine learning algorithms [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(21): 532249-532249. |
| [11] | Qianhua YANG, Yang YANG, Binwen WANG, Yupei GUO. Effect of strain rate on spall strength of Ti-6Al-4V dual-phase alloy [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(21): 532318-532318. |
| [12] | . Evaluation of compressive behavior in composite stiffened panels with initial debonding defects [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
| [13] | Miaojiao PENG, Jinwen HUANG, Dianyin HU, Rongqiao WANG, Junjie YANG, Zhigang JIA, Qinglin CHEN, Yifeng SUN, Yingqiang CAI, Kuan FAN, Zhaoyi ZHU, Xiaowen LI. Research progress on interfacial mechanical properties, damage mechanisms, and reinforcement strategies of CFRP composites for aero-engines [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(16): 231600-231600. |
| [14] | Riming YANG, Xiuli SHEN, Shaojing DONG. Influence of hydrogen on microstructure and mechanical properties of TC4ELI titanium alloy welded joints [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(15): 431439-431439. |
| [15] | . The role of configurational entropy in enhancing CMAS corrosion resistance of rare-earth zirconates [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

