| [1] |
WANG H D, YU C, YU Z Y, et al. Revealing the evolution of microstructure and mechanical properties with energy density to achieve high-strength Ti-6wt%Cu alloy by laser metal deposition[J]. Materials Science and Engineering: A, 2023, 885: 145599.
|
| [2] |
何斌斌, 邹海燕, 辛程, 等. Cu含量对生物医用Ti-Cu合金抑菌表现及性能的影响[J]. 中国有色金属学报, 2023, 33(8): 2536-2548.
|
|
HE B B, ZOU H Y, XIN C, et al. Effects of Cu content on antibacterial performance and properties of biomedical Ti-xCu alloys[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(8): 2536-2548 (in Chinese).
|
| [3] |
侯冰. Cu元素的存在形式对Ti-Cu合金力学性能和抗菌性能的影响规律[D]. 沈阳: 东北大学, 2015.
|
|
HOU B. The influenec of the existence form of Cu element on the mechanical properties and antibacterial property of Ti-Cu alloys[D]. Shenyang: Northeastern University, 2015 (in Chinese).
|
| [4] |
CARDOSO F F, CREMASCO A, CONTIERI R J, et al. Hexagonal martensite decomposition and phase precipitation in Ti-Cu alloys[J]. Materials & Design, 2011, 32(8-9): 4608-4613.
|
| [5] |
DONTHULA H, VISHWANADH B, ALAM T, et al. Morphological evolution of transformation products and eutectoid transformation(s) in a hyper-eutectoid Ti-12 at% Cu alloy[J]. Acta Materialia, 2019, 168: 63-75.
|
| [6] |
WANG X, ZHANG L J, NING J, et al. Effect of Cu-induced eutectoid transformation on microstructure and mechanical properties of Ti-6Al-4V alloy by laser wire deposition[J]. Materials Science and Engineering: A, 2022, 833: 142316.
|
| [7] |
AKBARPOUR M R, MIRABAD H M, HEMMATI A, et al. Processing and microstructure of Ti-Cu binary alloys: A comprehensive review[J]. Progress in Materials Science, 2022, 127: 100933.
|
| [8] |
ZHANG D Y, QIU D, GIBSON M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys[J]. Nature, 2019, 576(7785): 91-95.
|
| [9] |
XI L X, HOU J X, XU J C, et al. Laser additive manufacturing of Ti and Ce co-modified 2195 difficult-to-process aluminum alloy: Grain refinement, cracking suppression and enhanced mechanical properties[J]. Chinese Journal of Aeronautics, 2025, 38(8): 103262.
|
| [10] |
ALSHAMMARI Y, YANG F, BOLZONI L. Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 95: 232-239.
|
| [11] |
MOSALLANEJAD M H, NIROUMAND B, AVERSA A, et al. In-situ alloying in laser-based additive manufacturing processes: A critical review[J]. Journal of Alloys and Compounds, 2021, 872: 159567.
|
| [12] |
司瑞, 陈勇. 民用飞机增材制造技术应用发展趋势[J]. 航空学报, 2024, 45(5): 529677.
|
|
SI R, CHEN Y. Application trends of additive manufacturing technology for civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529677 (in Chinese).
|
| [13] |
魏取龙, 姜丽红, 刘征, 等. 选区激光熔化制备TPMS晶格结构及力学性能[J]. 航空学报, 2025, 46(3): 303-318.
|
|
WEI Q L, JIANG L H, LIU Z, et al. Lattice structure and mechanical properties of TPMS prepared by selective laser melting[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 303-318 (in Chinese).
|
| [14] |
李毅, 王振忠, 肖宇航, 等. 金属激光增材+X复合制造技术综述[J]. 航空学报, 2024, 45(13): 629349.
|
|
LI Y, WANG Z Z, XIAO Y H, et al. Review of laser-metal additive manufacturing + X hybrid technology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629349 (in Chinese).
|
| [15] |
KIM T W, KIM D H, CHO Y T, et al. Manufacturing high strength Ti alloy with in situ Cu alloying via directed energy deposition and evaluation of material properties[J]. Journal of Materials Research and Technology, 2024, 28: 1810-1823.
|
| [16] |
ZHANG L W, LI H, BIAN T J, et al. Significant reduction of anisotropy in stress relaxation aging and mechanical properties improvement for 2195 Al-Cu-Li alloy subjected to plastic loading[J]. Chinese Journal of Aeronautics, 2025, 38(1): 103165.
|
| [17] |
ZHAO R, SONG Y S, KANG H, et al. Microstructure evolution and mechanical properties of brazing joint for ultra-thin-walled Inconel 718 considering grain size effect and brazing temperature[J]. Chinese Journal of Aeronautics, 2024, 37(2): 541-556.
|
| [18] |
HUANG S X, ZHAO Q Y, LIN C, et al. In-situ investigation of tensile behaviors of Ti-6Al alloy with extra low interstitial[J]. Materials Science and Engineering: A, 2021, 809: 140958.
|
| [19] |
JI X Y, XU J W, ZHANG H, et al. Plastic deformation mechanism of TA1 pure titanium plate using SEM-EBSD in situ tensile testing[J]. Materials Science and Engineering: A, 2024, 908: 146768.
|
| [20] |
ULLAH R, LU J X, SANG L J, et al. Investigating the microstructural evolution during deformation of laser additive manufactured Ti-6Al-4V at 400 ℃ using in situ EBSD[J]. Materials Science and Engineering: A, 2021, 823: 141761.
|
| [21] |
RIZWAN M, LU J X, ULLAH R, et al. Microstructural and texture evolution investigation of laser melting deposited TA15 alloy at 500 ℃ using in situ EBSD tensile test[J]. Materials Science and Engineering: A, 2022, 857: 144062.
|
| [22] |
WILLIAMS J C, BAGGERLY R G, PATON N E. Deformation behavior of HCP Ti-Al alloy single crystals[J]. Metallurgical and Materials Transactions A, 2002, 33(3): 837-850.
|
| [23] |
FITZNER A, LEO PRAKASH D G, FONSECA J Q DA, et al. The effect of aluminium on twinning in binary alpha-titanium[J]. Acta Materialia, 2016, 103: 341-351.
|
| [24] |
ZAEFFERER S. A study of active deformation systems in titanium alloys: Dependence on alloy composition and correlation with deformation texture[J]. Materials Science and Engineering: A, 2003, 344(1-2): 20-30.
|
| [25] |
WANG H J, RAN X Z, WANG H C, et al. Microstructure formation mechanism and mechanical properties of super-thickness TC11 titanium alloy joint by electron beam welding and laser additive manufacturing hybrid connection technology[J]. Journal of Materials Processing Technology, 2024, 331: 118502.
|
| [26] |
YAN W G, WANG H M, TANG H B, et al. Effect of Nd addition on microstructure and tensile properties of laser additive manufactured TC11 titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(5): 1501-1512.
|
| [27] |
BHARDWAJ T, SHUKLA M, PAUL C P, et al. Direct energy deposition-laser additive manufacturing of titanium-molybdenum alloy: Parametric studies, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2019, 787: 1238-1248.
|
| [28] |
CHEN Y H, YANG C L, FAN C L, et al. Microstructure evolution mechanism and mechanical properties of TC11-TC17 dual alloy after annealing treatment[J]. Journal of Alloys and Compounds, 2020, 842: 155874.
|
| [29] |
王哲. 铸造钛铜合金组织演变规律及力学和腐蚀性能研究[D]. 天津: 河北工业大学, 2022.
|
|
WANG Z. Microstructure evolution and mechanical corrosion properties of cast titanium-copper alloys[D]. Tianjin: Hebei University of Technology, 2022 (in Chinese).
|
| [30] |
ZHAO G H, SUN M X, LI J, et al. Study on quasi-in-situ tensile microstructure evolution law of 5052-O aluminum alloy based on EBSD[J]. Materials Today Communications, 2022, 33: 104572.
|
| [31] |
CALCAGNOTTO M, PONGE D, DEMIR E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[J]. Materials Science and Engineering: A, 2010, 527(10-11): 2738-2746.
|
| [32] |
KUNDU A, FIELD D P. Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel[J]. Materials Science and Engineering: A, 2016, 667: 435-443.
|
| [33] |
JIANG J, BRITTON T B, WILKINSON A J. Evolution of dislocation density distributions in copper during tensile deformation[J]. Acta Materialia, 2013, 61(19): 7227-7239.
|
| [34] |
LU J X, CHANG L, WANG J, et al. In-situ investigation of the anisotropic mechanical properties of laser direct metal deposition Ti6Al4V alloy[J]. Materials Science and Engineering: A, 2018, 712: 199-205.
|
| [35] |
LI W S, YAMASAKI S, MITSUHARA M, et al. In situ EBSD study of deformation behavior of primary α phase in a bimodal Ti-6Al-4V alloy during uniaxial tensile tests[J]. Materials Characterization, 2020, 163: 110282.
|