| [1]HOWELL R J, HODSON H P, SCHULTE V, et al. Boundary layer development in the BR710 and BR715 LP turbines—the implementation of high-lift and ultra-high-lift concepts[J]. Journal of Turbomachinery, 2002, 124(3): 385–92.[2]CURTIS E M, HODSON H P, BANIEGHBAL M R, et al. Development of blade profiles for low-pressure tur-bine applications[J]. Journal of Turbomachinery, 1997, 119(3): 531–538.[3]VOLINO R J, IBRAHIM M B. Separation control on high lift low-pressure turbine airfoils using pulsed vortex generator jets[J]. Applied Thermal Engineering, 2012, 49(1): 31–40.[4]ZHANG W H, ZOU Z P, QI L, et al. Effects of freestream turbulence on separated boundary layer in a low-Re high-lift LP turbine blade[J]. Computers & Flu-ids, 2015, 109(0): 1–12.[5]罗佳奇, 傅文豪, 曾先, 等. 雷诺数对高负荷低压涡轮叶栅流动损失的不确定性影响[J]. 航空学报, 2022, 43(7): 125427.LUO J Q, FU W H, ZENG X, et al. Uncertainty impact of Reynolds number on flow losses of high-lift low-pressure turbine cascade[J]. ACTA AERONAUTI -CAET ASTRONAUTICA SINICA, 2022, 43(7): 125427(in Chinese).[6]GREGORY-SMITH D G, CLEAK J G E. Secondary Flow Measurements in a Turbine Cascade with High In-let Turbulence[J]. Journal of Turbomachinery, 1992, 114(1): 173-183.[7]QU X, ZHANG Y F, LU X G, et al. Effects of Periodic Wakes on the Endwall Secondary Flow in High-lift Low-pressure Turbine Cascades at Low Reynolds Numbers[J]. Proceedings of the Institution of Mechanical Engineers, Part G, 2019, 233(1): 354-368.[8]朱志豪, 隋秀明, 浦健, 等. 多级无导叶对转涡轮尾迹/激波转转级间非定常干涉对叶片气动载荷的影响[J]. 航空学报, 2024, 45(24): 630582.ZHU Z H, SUI X M, PU J, et al. Aerodynamic load of multistage vaneless counterrotating turbine under wake/shock rotor/rotor interactions[J]. ACTA AERON-AUTICAET ASTRONAUTICA SINICA, 2024, 45(24): 630582(in Chinese).[9]CUI J, NAGABHUSHANA R V, TUCKER P. Numerical Investigation of Contrasting Flow Physics in Different Zones of a High-Lift Low-Pressure Turbine Blade,” Journal of Turbomachinery. 2016, 138(1): 011003.[10]刘俊, 杨党国, 王显圣, 等. 湍流边界层厚度对三维空腔流动的影响[J]. 航空学报, 2016, 37(2): 475-483.LIU J, YANG D G, WANG X H, et al. Effect of turbu-lent boundary layer thickness on a three-dimensional cav-ity flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(2): 475-483(in Chinese).[11]GLOERFELT, X, CINNELLA P. High-Fidelity Investi-gation of Vortex Shedding From a Highly Loaded Tur-bine Blade [J]. Journal of Turbomachinery, 2025, 147(9): 091009.[12]LEGGETT J, ZHAO Y M, SANDBERG R D. High-Fidelity Simulation Study of the Unsteady Flow Effects on High-Pressure Turbine Blade Performance[J]. Journal of Turbomachinery, 2023, 145(1): 011002.[13]MOORE R W, RICHARDSON D. L. Skewed Bounda-ry Layer Flow Near the End Walls of a Compressor Cas-cade[J]. Journal of Fluids Engineering, 1957, 79(8): 1789-1797.[14]CARRICK H B. Secondary Flows and Losses in Tur-bine Cascades with Inlet Skew[D]. Cambridge: Universi-ty of Cambridge ,1975: 32-48.[15]BINDON J P. The Effect of Hub Inlet Boundary Layer Skewing on the Endwall Shear Flow in an Annular Tur-bine Cascade[C]// in Proceedings of the ASME Interna-tional Gas Turbine Conference and Exhibit and Solar En-ergy Conference, 1979: 79-GT-13.[16]WALSH J A, GREGORY-SMITH D J. Inlet Skew and the Growth of Secondary Losses and Vorticity in a Tur-bine Cascade[J]. Journal of Turbomachinery, 1990, 112(4), 633–642.[17]WALSH J. A. Flows and Inlet Skew in Axial Flow Tur-bine Cascades[D]. Durham: Durham University, 1987: 10-36.[18]DEMARGNE A A J, LONGLEY J P. The Aerodynamic Interaction of Stator Shroud Leakage and Mainstream Flows in Compressors[C]// in Proceedings of the ASME Turbo Expo: Power for Land, Sea, and Air, 2000: 2000-GT-0570.[19]BHLE M, STARK U. A Numerical Investigation of the Effect of End-Wall Boundary Layer Skew on the Aero-dynamic Performance of a Low Aspect Ratio, High Turning Compressor Cascade[C]// in ASME Internation-al Mechanical Engineering Congress and Exposition, 2007: IMECE2007-44049.[20]LI X J, CHU W L, WU Y H. Numerical Investigation of Inlet Boundary Layer Skew in Axial-Flow Compressor Cascade and the Corresponding Non-Axisymmetric End Wall Profiling[J]. Proceedings of the Institution of Me-chanical Engineers Part A Journal of Power & Energy, 2014, 228(A6): 638-656.[21]BLANCO D L R. Secondary Flows in Low-Pressure Turbines[D]. Cambridge: Cambridge University Engi-neering Department, 2004: 16-32.[22]GHOSH K, GOLDSTEIN R J. Effect of inlet Skew on Heat/Mass Transfer from a Simulated Turbine Blade[J]. Journal of Turbomachinery, 2012, 134(5): 051-042.[23]HILGERT M, BOHLE M. A CFD-Based Investigation of Boundary Layer Skew in the Hub Region of a Low Speed Axial Compressor and its Influence on Perfor-mance and Losses[C]// in Proceedings of the ASME Flu-ids Engineering Division Summer Meeting, 2009: FEDSM2009-78181.[24]BAUM O, KOSCHICHOW D, FROHLICH J. Influ-ence of the Coriolis Force on the Flow in a Low Pressure Turbine Cascade T106[C]// in Proceedings of the ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, 2016: GT2016-57399.[25]VENTOSA-MOLINA J, LANGE M, MAILACH R, et al. Study of Relative Endwall Motion Effects in a Com-pressor Cascade Through Direct Numerical Simula-tions[J]. Journal of Turbomachinery, 2021, 143(1): 011005.[26]VENTOSA-MOLINA J, KOPPE B, LANGE M, et al. Effects of Rotation on the Flow Structure in a Compres-sor Cascade[J]. Journal of Turbomachinery, 2022, 144(8): 081006.[27]SU X R, BIAN X T, LI H, et al. Unsteady Flows of a Highly Loaded Turbine Blade With Flat Endwall and Contoured Endwall[J]. Aerospace Science and Technolo-gy, 2021, 118: 106989.[28]ROBISON Z, GROSS A. Comparative Numerical In-vestigation of Wake Effect on Low-Pressure Turbine Endwall Flow[J]. Aerospace Science and Technology, 2022, 131:107970.[29]QU X, ZHANG Y F, LU X G, et al. Unsteady Wakes–Secondary Flow Interactions in a High-Lift Low-Pressure Turbine Cascade[J]. Chinese Journal of Aero-nautics, 2020, 33(3): 879–892.[30]QU X, ZHANG Y F, LU X G, et al. Unsteady Effects of Periodic Wake Passing Frequency on Aerodynamic Per-formance of Ultra-High-Lift Low Pressure Turbine Cas-cades[J]. Physics of Fluids, 2019, 31(9): 094302.[31]李会, 黄通, 苏欣荣, 等. 基于DDES模拟的叶顶泄漏流与尾迹非定常干涉机理[J]. 航空学报, 2023, 44(14): 628325-628325.LI H, HUANG T, SU X R, et al. DDES analysis of un-steady characteristics of interaction between tip leakage flow and wake[J]. Acta Aeronautica et Astronautica Sini-ca, 2023, 44(14): 628325-628325(in Chinese).[32]向康深, 陈伟杰, 连健欣, 等. 弯曲/倾斜静叶对涡轮单音噪声影响的数值分析[J]. 航空学报, 2024, 45(10): 129366-129366.XIANG K S, CHEN W J, LIAN J X, et al. Numerical analysis of effect of bend/lean stator on turbine tonal noise[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129366-129366(in Chinese).[33]孙爽, 张哲瑜, 左灿林, 等. 尾迹对低压涡轮端区非定常流动影响的数值研究[J]. 推进技术, 2022, 43(1):200466.SUN S, ZHANG Z Y, ZUO C L, et al. Numerical Inves-tigation of Wakes on Endwall Unsteady Flow Inside Low Pressure Turbine[J]. Journal of Propulsion Technology, 2022, 43(1):200466(in Chinese).[34]曹惠玲, 左灿林. 周期性尾迹对涡轮端区二次流强度影响[J]. 科学技术与工程, 2021, 21(32): 13980-13985.Cao H L, Zuo C L. Influence of wakes on turbine end-wall secondary flow [J]. Science Technology and Engi-neering, 2021, 21(32): 13980-13985(in Chinese).[35]GROSS A, SONDERGAARD R, MARKS C R. Nu-merical Investigation of Low-Pressure Turbine Junction Flow[J]. AIAA Journal, 2017, 55(10): 3617.[36]陈大为, 朱惠人, 李华太, 等. 尾迹对涡轮动叶全表面气膜冷却效率的影响[J]. 航空学报, 2019, 40(3): 122651-122651.CHEN D W, ZHU H R, LI H T, et al. Effect of unsteady wake on full coverage film cooling effectiveness for a turbine blade[J]. ACTA AERONAUTICAET ASTRO-NAUTICA SINICA, 2019, 40(3): 122651-122651(in Chinese).[37]QU X, LI L N, ZHANG Y J, et al. Unsteady Controlling secondary flow in high-lift low-pressure turbine using boundary-layer slot suction[J]. Chinese Journal of Aero-nautics, 2024, 37(3): 21-33.[38]QU X, WU M, ZHANG Y F, et al. Unsteady Interaction Between Purge Flow and Secondary Flow in High-Lift Low-Pressure Turbine[J]. Journal of Turbomachinery, 2024, 146(11): 111005.[39]ZHANG Z Q, ZHANG Y J, DONG X, et al. Flow Mechanism between Purge Flow and Mainstream in Dif-ferent Turbine Rim Seal Configurations[J]. Chinese Journal of Aeronautics, 2020, 33(8): 2162-2175.[40]李伟, 张波, 周敏, 等.尾迹扫掠下超高负荷低压涡轮叶片附面层特性[J]. 航空动力学报, 2012, 27(1):176-182.LI W, ZHANG B, ZHOU M, et al. Boundary Layer Be-haviors on An Ultra-high-lift Low-pressure Turbine Pro-file Under Unsteady Wakes[J]. Journal of Aerospace Power, 2012, 27(1):176-182(in Chinese).[41]程剑锐, 施崇广, 瞿丽霞, 等. 二维弯曲激波/湍流边界层干扰流动理论建模[J]. 航空学报, 2022, 43(9): 125993.CHENG J R, SHI C G, QU L X, et al. Theoretical model of 2D curved shock wave/turbulent boundary layer inter-action[J]. ACTA AERONAUTICAET ASTRONAU-TICA SINICA, 2022, 43(9): 125993(in Chinese).[42]陆小革, 易仕和, 何霖, 等. 高分辨率激波/边界层干扰时间演化过程分析[J]. 航空学报, 2022, 43(1): 626147.LU X G, YI S H, HE L, et al. Time evolution process of high resolution shock wave/turbulent boundary layer in-teraction[J]. ACTA AERONAUTICAET ASTRONAU-TICA SINICA, 2022, 43(1): 626147(in Chinese).[43]WANG H P, OLSON S J, GOLDSTEIN R J, et al. Flow Visualization in a Linear Turbine Cascade of High Per-formance Turbine Blades[J]. Journal of Turbomachinery, 1997, 119(1): 1–8.[44]黄镜玮, 付维亮, 马国骏, 等. 受轮缘密封结构影响的1.5级涡轮封严流与主流的相互作用以及轮缘密封间流动干扰[J]. 航空学报, 2021, 42(7): 124549-124549.HUANG J W, FU W L, MA G J, et al. Interaction be-tween 1.5-stage turbine rim seal purge flow and main-stream and flow interference between rim seals affected by rim seal structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 124549-124549(in Chinese). |