| [1] 王帅, 晁涛, 韩宇辰等. 变体飞行器变形策略与控制方法研究进展[J]. 战术导弹技术, 2024, (04): 1-15.WANG S, CHAO T, HAN Y C, et al. Research Progress on Morphing Strategies and Control Methods for Morphing Aircraft[J]. Tactical Missile Technology, 2022, 04: 1-15 (in Chinese).[2] 王鹏, 陈浩岚, 鲍存余等. 变形飞行器建模及控制方法研究综述[J]. 宇航学报, 2022, 43(07):853-865.WANG P, CHEN H L, BAO C Y, et al. Review on Modeling and Control Methods of Morphing Vehicle.[J]. Journal of Astronautics, 2022, 43(07): 853-865 (in Chinese).[3] REN J R, HANG B, SANG M H, et al. Nonlinearity Compensation Based Robust Tracking Control of Nonlinear Nonminimum Phase Hypersonic Flight Vehicles [J]. ISA Transactions, 2022, 131: 236-245.[4] GUO Z Y, Henry D, Gu X Y, et al. Performance-Guaranteed Attitude Tracking Control for RLV: A Finite-Time PPC Approach [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024 , 60(4): 5024-5034.[5] HUANG J, WANG T Y, WANG G, et al. Adaptive Fault-Tolerant Control for a Class of Flexible Air-Breaking Hypersonic Vehicles[J]. Asian Journal of Control, 2023, 25(5): 3792-3804[6] 王忠森, 廖宇新, 魏才盛等. 高超声速飞行器快速终端滑模保性能容错控制[J]. 航空学报, 2023, 44(24): 162-175.WANG Z S, LIAO Y X, WEI C S et al. Fault Tolerant Control of Fast Terminal Sliding Mode Preserving Performance of Hypersonic Vehicle.[J] Acta Aeronautica et Astronautica Sinica (in Chinese),.2023, 44(24): 162-175 (in Chinese).[7] SHAO J C, CHE W W, SHAO K. Nonlinear Prescribed Performance Sliding Mode Control of Hypersonic Vehicles.[J] Int J Robust Nonlinear Control, 2024, 34(14): 9928-9948[8] YIN Z.Y, WANG B, XIONG R T, et al. Attitude Tracking Control of Hypersonic Vehicle Based on an Improved Prescribed Performance Dynamic Surface Control.[J] The Aeronautical Journal, 2024, 128: 875–895.[9] BU X W, Lv M L, Lei H M, et al. Fuzzy Neural Pseudo Control With Prescribed Performance for Waverider Vehicles: A Fragility-Avoidance Approach.[J]. IEEE Transactions on Cybernetics, 2023, 53(8): 4986-4999.[10] 张化光, 张欣, 罗艳红, 杨珺. 自适应动态规划综述[J]. 自动化学报, 2013, 39(04): 303-311.ZHANG H G, ZHANG X, LUO H Y, YANG J. An Overview of Research on Adaptive Dynamic Programming[J]. Acta Automatica Sinica, 2013, 39(4): 303-311 (in Chinese). [11] BAO C Y, WANG P, TANG G J. Data-Driven Based Model-Free Adaptive Optimal Control Method for Hypersonic Morphing Vehicle.[J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59(4): 3713-3725.[12] BAO C Y, WANG P, HE RZ, et al. Observer-Based Optimal Control Method Combination with Event-Triggered Strategy for Hypersonic Morphing Vehicle[J]. Aerospace Science and Technology, 2023, 136: 108219[13] HUANG X, LIU J R, JIA C H, et al. Online Self-learning Attitude Tracking Control of Morphing Unmanned Aerial Vehicle Based on Dual Heuristic Dynamic Programming[J]. Aerospace Science and Technology, 2023, 143: 108727.[14] WANG Z, WU T Y, ZHU Z X, et al. Reinforcement Learning-Based Adaptive Attitude Control Method for a Hypersonic Flight Vehicles Subject to Nonaffine Structure and Unmatched Disturbances[J]. Journal of Aerospace Engineering, 2023, 37(2): 04024003.[15] Ye H, Meng Y Z, Wen L Y, Li Z Q. State Constrained Fault-Tolerant Control of Hypersonic Vehicle With Unknown Centroid Shift Based on Zero-Sum Game[J] IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(1): 831-843.[16] Hu G J, Guo J G, Guo Z Y, et al. ADP-Based Intelligent Tracking Algorithm for Reentry Vehicles Subjected to Model and State Uncertainties[J]. IEEE Transactions on Industrial Informatics, 2023, 19(4): 6047-6055。[17] HU G J, GUO J G, Jerome Cieslak, et al. Fault-Tolerant Control Based on Adaptive Dynamic Programming for Reentry Vehicles Subjected to State-Dependent Actuator Fault [J]. Engineering Applications of Artificial Intelligence, 2023, 123:106450.[18] XU S H, WEI C Z, CAI L G, et al. Neural Network-Based Adaptive Optimal Tracking Control for Hypersonic Morphing Aircraft with Appointed-Time Prescribed Performance[J]. Journal of the Franklin Institute, 2024, 361(12): 107026 [19] AN K, WANG Z G, HUANG W. Adaptive Learning-Based Optimal Tracking Control System Design and Analysis of a Disturbed Nonlinear Hypersonic Vehicle Model [J]. Science China Technological Sciences, 2024, 67: 1893-1906. [20] AN K, WANG Z G, HUANG W, et al. Performance-Prescribed Optimal Neural Control for Hypersonic Vehicles Considering Disturbances: An Adaptive Dynamic Programming Approach [J]. Aerospace Science and Technology, 2024, 152: 109370. [21] 曹承钰, 李繁飙, 廖宇新,等. 高超声速变外形飞行器建模与固定时间预设性能控制[J]. 自动化学报, 2024, 50(03): 486-504.CAO C Y, LI F B, LIAO Y X, et al. Modeling and Fixed-Time Prescribed Performance Control for Hypersonic Morphing Vehicle.[J] Acta Automatica Sinica, 2024, 50(3):486-504 (in Chinese).[22] FAN W R, TIAN B L. Adaptive Multivariable Super-Twisting Sliding Mode Controller and Disturbance Observer Design for Hypersonic Vehicle [J]. Mathematical Problems in Engineering, 2016, 2016: 5291912.[23] BU X W, WU X Y, HUANG J Q, et al. A Guaranteed Transient Performance-Based Adaptive Neural Control Scheme with Low-Complexity Computation for Flexible Airbreathing Hypersonic Vehicles[J]. Nonlinear Dynamics, 2016, 84(4): 2175-2194[24] QIN C B, WANG J G, ZHU H Y, et al. Safe Adaptive Learning Algorithm with Neural Network Implementation for Control of Nonlinear Safe-Critical System [J] Int J Robust Nonlinear Control, 2023, 33: 372-391. |