| [1] |
林鹏, 庄福建, 曲林锋, 等 .高超声速飞机尾喷管设计-制造与验证技术发展综述[J]. 航空学报, 2022, 43(6): 52-62.
|
|
LIN P, ZHUANG F J, QU L F, et al. Technological development in hypersonic nozzle design, manufacture and validation: A review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 52-62 (in Chinese).
|
| [2] |
徐惊雷. 超燃冲压及TBCC组合循环发动机尾喷管设计方法研究进展[J]. 推进技术, 2018, 39(10): 2236-2251.
|
|
XU J L. Research progress of nozzle design method for scramjet and turbine based combined cycle[J]. Journal of Propulsion Technology, 2018, 39(10): 2236-2251 (in Chinese).
|
| [3] |
LV Z, XU J L, SONG G T, et al. Review on the aerodynamic issues of the exhaust system for scramjet and turbine based combined cycle engine[J]. Progress in Aerospace Sciences, 2023, 143: 1-35.
|
| [4] |
LI J P, SONG W Y, XING Y, et al. Influences of geometric parameters upon nozzle performances in scramjets[J]. Chinese Journal of Aeronautics, 2008, 21(6): 506-511.
|
| [5] |
于洋. RBCC单边膨胀喷管过膨胀流动分离现象及机理研究[D]. 南京: 南京航空航天大学, 2017.
|
|
YU Y. Study on over-expansion flow separation phenomenon and mechanism of RBCC unilateral expansion nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese).
|
| [6] |
HIRAIWA T, TOMIOKA S, UEDA S, et al. Performance variation of scramjet nozzle at various nozzle pressure ratios[J]. Journal of Propulsion and Power, 1995, 11(3): 403-408.
|
| [7] |
晏至辉, 刘卫东. 超燃冲压发动机尾喷管数值分析[J]. 导弹与航天运载技术, 2006(5): 50-52.
|
|
YAN Z H, LIU W D. Numericla simulation to scramjet nozzle’s performance under different external flow condition and nozzle pressure ratio[J]. Missiles and Space Vehicles, 2006(5): 50-52 (in Chinese).
|
| [8] |
文科, 李旭昌, 马岑睿, 等. 不同入口马赫数对超燃冲压发动机尾喷管的性能影响研究[J]. 火箭推进, 2011, 37(3): 18-21.
|
|
WEN K, LI X C, MA C R, et al. Influence of nozzle inlet Mach number on performance of scramjet nozzle[J]. Journal of Rocket Propulsion, 2011, 37(3): 18-21 (in Chinese).
|
| [9] |
文科, 李旭昌, 马岑睿, 等. 超燃冲压发动机尾喷管性能数值模拟研究[J]. 弹箭与制导学报, 2011, 31(5): 125-128.
|
|
WEN K, LI X C, MA C R, et al. Numerical simulation research on nozzle performance of scramjet[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(5): 125-128 (in Chinese).
|
| [10] |
全志斌, 徐惊雷, 李斌, 等. 超燃冲压发动机尾喷管非均匀进口的冷流试验与数值模拟[J]. 航空学报, 2013, 34(10): 2308-2315.
|
|
QUAN Z B, XU J L, LI B, et al. Cold flow experiment and numerical simulation on nonuniform entrance flow of scramjet nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2308-2315 (in Chinese).
|
| [11] |
LV Z, XU J L, YU K K, et al. Experimental and numerical investigations of a scramjet nozzle at various operations[J]. Aerospace Science and Technology, 2020, 96: 105536.
|
| [12] |
SUN Y F, DUAN C X, LI R F, et al. Combined effects of inlet airflow temperature and upper expansion angle on the performance of scramjet nozzle[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(7): 1037-1046.
|
| [13] |
贺旭照, 秦思, 卫锋, 等. 吸气式高超声速飞行器非均匀尾喷流试验[J]. 航空学报, 2017, 38(3): 120199.
|
|
HE X Z, QIN S, WEI F, et al. Test of non-uniform nozzle plume for air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120199 (in Chinese).
|
| [14] |
YU D R, CHANG J T, BAO W, et al. Optimal classification criterions of hypersonic inlet start/unstart[J]. Journal of Propulsion and Power, 2007, 23(2): 310-316.
|
| [15] |
CHANG J, YU D, BAO W, et al. A CFD assessment of classifications for hypersonic inlet start/unstart phenomena[J]. The Aeronautical Journal, 2009, 113(1142): 263-271.
|
| [16] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
|
| [17] |
DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part Ⅰ: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
|
| [18] |
ZHANG Q F, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
|
| [19] |
王青, 谷良贤, 龚春林. 超燃冲压发动机可调喷管多目标优化设计[J]. 推进技术, 2013, 34(3): 294-299.
|
|
WANG Q, GU L X, GONG C L. Multi-objective optimization design of adjustable tail nozzle for scramjet engine[J]. Journal of propulsion technology, 2013, 34(3): 294-299 (in Chinese).
|
| [20] |
石波, 盛刚, 黄雪刚, 等. 吸气式发动机可调喷管调节片结构优化设计[J]. 火箭推进, 2021, 47(3): 52-59.
|
|
SHI B, SHENG G, HUANG X G, et al. Structural optimization design for variable nozzle flap of airbreathing engines[J]. Journal of Rocket Propulsion, 2021, 47(3): 52-59 (in Chinese).
|
| [21] |
杨洪涛, 游广飞, 徐亮, 等. 超声速风洞喷管冷却结构的多目标优化设计[J]. 航空动力学报, 2023, 38(5): 1047-1057.
|
|
YANG H T, YOU G F, XU L, et al. Multi-objective optimization design of nozzle cooling structure for supersonic wind tunnel[J]. Journal of Aerospace Dynamics, 2023, 38(5): 1047-1057 (in Chinese).
|
| [22] |
WANG Z H, SUN X, CHEN S. Multi-objective parameters optimization design of self-excited oscillation pulsed atomizing nozzle[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(11): 510.
|
| [23] |
SHENG X, YOU Y X, WU Y, et al. Multi-objective optimization of the geometric parameters of a pressure-swirl nozzle[J]. Journal of the Chinese Institute of Engineers, 2022, 45(8): 713-723.
|
| [24] |
ZHAO Y, ZHENG S J. Nozzle dimension design for aircraft engine infrared signature and thrust active control using MOEA/D[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(15): 2133-2138.
|
| [25] |
BUFI E A, CINNELLA P. Robust optimization of supersonic ORC nozzle guide vanes[J]. Journal of Physics: Conference Series, 2017, 821: 012014.
|
| [26] |
SPAID F, KEENER E. Experimental results for a hypersonic nozzle/afterbody flow field[C]∥10th Aerospace Sciences Meeting. Reston: AIAA, 1972.
|
| [27] |
ZHAO X C. Simulated annealing algorithm with adaptive neighborhood[J]. Applied Soft Computing, 2011, 11(2): 1827-1836.
|