Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (14): 31529.doi: 10.7527/S1000-6893.2025.31529
• Reviews • Previous Articles
Jixin DING1,2, Xue BAI1,2, Jun JIANG3, Dechuang MENG1,4, Shengxi WANG5, Jiahao QIN1, You ZHOU2, Lei ZHAO6, Ming XU1,2(
)
Received:2024-11-13
Revised:2024-12-17
Accepted:2025-01-13
Online:2025-01-21
Published:2025-01-21
Contact:
Ming XU
E-mail:xuming@buaa.edu.cn
Supported by:CLC Number:
Jixin DING, Xue BAI, Jun JIANG, Dechuang MENG, Shengxi WANG, Jiahao QIN, You ZHOU, Lei ZHAO, Ming XU. Advances in key technologies of space TOCC system[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(14): 31529.
| [1] 于志坚. 我国航天测控系统的现状与发展[J]. 中国工程科学, 2006, 8(10): 42-46. | |
| YU Z J. Status quo and development of spaceflight TT & C systems[J]. Engineering Science, 2006, 8(10): 42-46 (in Chinese). | |
| [2] 张威, 吴涛, 马宏, 等. 智能一体化航天测运控网络发展探析[J]. 天地一体化信息网络, 2021, 2(2): 82-89. | |
| ZHANG W, WU T, MA H, et al. Discussion on the development of integrated and intelligent space TTC & OC network[J]. Space-Integrated-Ground Information Networks, 2021, 2(2): 82-89 (in Chinese). | |
| [3] KAZEMNIA A, DUTT A, WANG L, et al. Enhancing space communications: A novel approach to solving the multi-satellite scheduling problem[C]∥2024 IEEE Aerospace Conference. Piscataway: IEEE Press, 2024. | |
| [4] HARMON K, ARNOLD B, LEVESQUE M, et al. Pre-launch lessons learned from NASA’S deep space network support for the Artemis I mission to the moon[J]. Acta Astronautica, 2023, 210: 589-595. | |
| [5] 于志坚. 航天测控系统工程[M]. 北京: 国防工业出版社, 2008. | |
| YU Z J. Aerospace TT & C system engineering[M]. Beijing: National Defense Industry Press, 2008 (in Chinese). | |
| [6] 董光亮, 李海涛, 郝万宏, 等. 中国深空测控系统建设与技术发展[J]. 深空探测学报, 2018, 5(2): 99-114. | |
| DONG G L, LI H T, HAO W H, et al. Development and future of China’s deep space TT & C system[J]. Journal of Deep Space Exploration, 2018, 5(2): 99-114 (in Chinese). | |
| [7] 刘嘉兴. 载人航天USB测控系统及其关键技术[J]. 宇航学报, 2005, 26(6): 743-747. | |
| LIU J X. Key technologies of the USB TT & C system for manned space flight[J]. Journal of Astronautics, 2005, 26(6): 743-747 (in Chinese). | |
| [8] MILEANT A, HINEDI S. Overview of arraying techniques for deep space communications[J]. IEEE Transactions on Communications, 1994, 42(234): 1856-1865. | |
| [9] WANG S S, CHEN G, ZHOU L Q, et al. Research on the simulation of TT & C system of space survey vessel[J]. Advanced Materials Research, 2012, 490-495: 2505-2509. | |
| [10] MORAN J M. Thirty years of VLBI: Early days, successes, and future[J]. International Astronomical Union Colloquium, 1998, 164: 1-10. | |
| [11] 洪晓瑜, 张秀忠, 郑为民, 等. VLBI技术研究进展及在中国探月工程的应用[J]. 深空探测学报, 2020, 7(4): 321-331. | |
| HONG X Y, ZHANG X Z, ZHENG W M, et al. Research progress of VLBI technology and application to China lunar exploration project[J]. Journal of Deep Space Exploration, 2020, 7(4): 321-331 (in Chinese). | |
| [12] MAJID W A, BAGRI D S. Precision spacecraft tracking using in-beam phase referencing[C]∥2008 IEEE Aerospace Conference. Piscataway: IEEE Press, 2008. | |
| [13] LANYI G. Total ionospheric electron content calibration using series GPS satellite data: SEE N86-28275[R]. Washington, D.C.: NASA, 1986. | |
| [14] FELTENS J. The International GPS Service (IGS) ionosphere working group[J]. Advances in Space Research, 2003, 31(3): 635-644. | |
| [15] KOMJATHY A, SPARKS L, WILSON B D, et al. Automated daily processing of more than 1 000 ground-based GPS receivers for studying intense ionospheric storms[J]. Radio Science, 2005, 40(6): 1-11. | |
| [16] MÄNNEL B, ROTHACHER M. Ionospheric corrections for single-frequency tracking of GNSS satellites by VLBI based on co-located GNSS[J]. Journal of Geodesy, 2016, 90(2): 189-203. | |
| [17] 周伟莉, 宋淑丽, 李培佳, 等. 基于GNSS加密网的VLBI电离层时延修正方法[J]. 深空探测学报, 2020, 7(4): 362-370. | |
| ZHOU W L, SONG S L, LI P J, et al. Ionospheric TEC correction for VLBI based on GNSS density network[J]. Journal of Deep Space Exploration, 2020, 7(4): 362-370 (in Chinese). | |
| [18] 李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10): 3718-3729. | |
| LI Z S, WANG N B, LI M, et al. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS services[J]. Chinese Journal of Geophysics, 2017, 60(10): 3718-3729 (in Chinese). | |
| [19] 李艳华, 卢满宏. 天基测控系统应用发展趋势探讨[J]. 飞行器测控学报, 2012, 31(4): 1-5. | |
| LI Y H, LU M H. Trends of applications of space-based TT & C system[J]. Journal of Spacecraft TT & C Technology, 2012, 31(4): 1-5 (in Chinese). | |
| [20] JACKSON J A, MARR G C, MAHER M J, et al. Tracking and data relay satellite system (TDRSS) support of user spacecraft without TDRSS transponders[J]. Advances in the Astronautical Sciences, 1995, 90, 2025-2043. | |
| [21] EKICI E, AKYILDIZ I F, BENDER M D. A distributed routing algorithm for datagram traffic in LEO satellite networks[J]. IEEE/ACM Transactions on Networking, 2001, 9(2): 137-147. | |
| [22] SUZUKI R, YASUDA Y. Study on ISL network structure in LEO satellite communication systems[J]. Acta Astronautica, 2007, 61(7-8): 648-658. | |
| [23] 李勇军, 吴继礼, 赵尚弘, 等. 中低轨卫星跨层激光链路二次同步切换方法[J]. 电子学报, 2017, 45(3): 762-768. | |
| LI Y J, WU J L, ZHAO S H, et al. A two-step synchronous handover scheme of optical inter-orbit links in LEO and MEO satellite network[J]. Acta Electronica Sinica, 2017, 45(3): 762-768 (in Chinese). | |
| [24] GU X S, BAI J, ZHANG C Z, et al. Study on TT & C resources scheduling technique based on inter-satellite link[J]. Acta Astronautica, 2014, 104(1): 26-32. | |
| [25] 张光义. 共形相控阵天线的应用与关键技术[J]. 中国电子科学研究院学报, 2010, 5(4): 331-336. | |
| ZHANG G Y. Applications and key technologies of conformal phased array antenna[J]. Journal of China Academy of Electronics and Information Technology, 2010, 5(4): 331-336 (in Chinese). | |
| [26] LOW K K W, ZIHIR S, KANAR T, et al. A 27-31-GHz 1024-element Ka-band SATCOM phased-array transmitter with 49.5-dBW peak EIRP, 1-dB AR, and ±70° beam scanning[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(3): 1757-1768. | |
| [27] 张立华, 吴伟仁. 月球中继通信卫星系统发展综述与展望[J]. 深空探测学报, 2018, 5(6): 497-505, 568. | |
| ZHANG L H, WU W R. The development overview and prospect of lunar relay communication satellite system[J]. Journal of Deep Space Exploration, 2018, 5(6): 497-505, 568 (in Chinese). | |
| [28] AUDET Y, MELMAN F T, MOLLI S, et al. Positioning of a lunar surface rover on the south pole using LCNS and DEMs[J]. Advances in Space Research, 2024, 74(6): 2532-2550. | |
| [29] SCHIER J, ROURA C, PAULSEN P E, et al. Deeper dive into interoperability and its implications for LunaNet communications and navigation services[J]. International Journal of Satellite Communications and Networking, 2024: 2024; 1-22. | |
| [30] SHAW G B, MILLER D W, HASTINGS D E. Generalized characteristics of communication, sensing, and navigation satellite systems[J]. Journal of Spacecraft and Rockets, 2000, 37(6): 801-811. | |
| [31] STOLL E, BRUNN A, SHAHID K, et al. The optimization of memory management in Earth observation constellations[J]. Acta Astronautica, 2019, 164: 433-443. | |
| [32] BEN-LARBI M K, FLORES POZO K, CHOI M, et al. Towards the automated operations of large distributed satellite systems. Part 2: Classifications and tools[J]. Advances in Space Research, 2021, 67(11): 3620-3637. | |
| [33] LIU J, XUE Y, REN K J, et al. High-performance time-series quantitative retrieval from satellite images on a GPU cluster[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8): 2810-2821. | |
| [34] 杨旭明, 李忠, 李锦文, 等. 基于张衡一号卫星HBase数据库的入库方法研究[J]. 智能计算机与应用, 2022, 12(2): 54-57, 63. | |
| YANG X M, LI Z, LI J W, et al. Research on HBase database entry method based on Zhangheng-1 satellite[J]. Intelligent Computer and Applications, 2022, 12(2): 54-57, 63 (in Chinese). | |
| [35] LEMAı̂TRE M, VERFAILLIE G, JOUHAUD F, et al. Selecting and scheduling observations of agile satellites[J]. Aerospace Science and Technology, 2002, 6(5): 367-381. | |
| [36] SONG D Z, VAN DER STAPPEN A F, GOLDBERG K. An exact algorithm optimizing coverage-resolution for automated satellite frame selection[C]∥IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2004. | |
| [37] VASQUEZ M, HAO J K. A “logic-constrained” knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[J]. Computational Optimization and Applications, 2001, 20(2): 137-157. | |
| [38] LIU X L, BAI B C, CHEN Y W, et al. Multi satellites scheduling algorithm based on task merging mechanism[J]. Applied Mathematics and Computation, 2014, 230: 687-700. | |
| [39] KULKARNI A J, SHABIR H. Solving 0-1 knapsack problem using cohort intelligence algorithm[J]. International Journal of Machine Learning and Cybernetics, 2016, 7(3): 427-441. | |
| [40] WANG B C, LI S, MU J Z, et al. Research advancements in key technologies for space-based situational awareness[J]. Space: Science and Technology, 2022, 2022: 9802793. | |
| [41] PELTON J N. A path forward to better space security: Finding new solutions to space debris, space situational awareness and space traffic management[J]. Journal of Space Safety Engineering, 2019, 6(2): 92-100. | |
| [42] TRENT S A, PATTERSON E S, WOODS D D. Challenges for cognition in intelligence analysis[J]. Journal of Cognitive Engineering and Decision Making, 2007, 1(1): 75-97. | |
| [43] KEIM D, ANDRIENKO G, FEKETE J D, et al. Visual analytics: Definition, process, and challenges[M]∥Information Visualization. Berlin, Heidelberg: Springer, 2008: 154-175. | |
| [44] LI H J, YANG S H. Using range profiles as feature vectors to identify aerospace objects[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(3): 261-268. | |
| [45] SUN X, ZHANG L M, WANG Z P, et al. Scene categorization using deeply learned gaze shifting kernel[J]. IEEE Transactions on Cybernetics, 2019, 49(6): 2156-2167. | |
| [46] 王建荣, 杨元喜, 胡燕, 等. 高分十四号立体测绘卫星无控定位精度初步评估[J]. 测绘学报, 2023, 52(1): 8-14. | |
| WANG J R, YANG Y X, HU Y, et al. Preliminary location accuracy assessments of GF-14 stereo mapping satellite without ground control points[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 8-14 (in Chinese). | |
| [47] PETERSON E H, FOTOPOULOS G, ZEE R E. A feasibility assessment for low-cost InSAR formation-flying microsatellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2847-2858. | |
| [48] KRIEGER G, ZINK M, BACHMANN M, et al. TanDEM-X: A radar interferometer with two formation-flying satellites[J]. Acta Astronautica, 2013, 89: 83-98. | |
| [49] 楼良盛, 刘志铭, 张昊, 等. 天绘二号卫星工程设计与实现[J]. 测绘学报, 2020, 49(10): 1252-1264. | |
| LOU L S, LIU Z M, ZHANG H, et al. TH-2 satellite engineering design and implementation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1252-1264 (in Chinese). | |
| [50] DING J X, ZUO X, XU M, et al. Dynamics and control for transverse formation by a distributed drag sail[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6587-6598. | |
| [51] 张鸿林, 罗建军, 马卫华. 基于机器学习的航天器规避目标威胁博弈决策[J]. 航空学报, 2024, 45(8): 329136. | |
| ZHANG H L, LUO J J, MA W H. Spacecraft game decision making for threat avoidance of space targets based on machine learning[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329136 (in Chinese). | |
| [52] BOMBARDELLI C. Analytical formulation of impulsive collision avoidance dynamics[J]. Celestial Mechanics and Dynamical Astronomy, 2014, 118(2): 99-114. | |
| [53] ZHANG N, ZHANG Z, JIAO Y F, et al. Multitrajectory combination for multiple ground target observation by maneuvering on-orbit satellites[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 8428-8438. | |
| [54] SUN J L, LIU C S, YE Q. Robust differential game guidance laws design for uncertain interceptor-target engagement via adaptive dynamic programming[J]. International Journal of Control, 2017, 90(5): 990-1004. | |
| [55] PRINCE E R, HESS J A, COBB R G, et al. Elliptical orbit proximity operations differential games[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(7): 1458-1472. | |
| [56] ZHANG J R, ZHANG K P, ZHANG Y, et al. Near-optimal interception strategy for orbital pursuit-evasion using deep reinforcement learning[J]. Acta Astronautica, 2022, 198: 9-25. | |
| [57] STARIN S R, ETERNO J. Attitude determination and control systems: 20110007070[R]. Washington, D.C.: NASA, 2010. | |
| [58] 袁军, 魏懿, 王哲, 等. 三轴零动量卫星在轨转偏置动量控制的设计与实现[J]. 空间控制技术与应用, 2013, 39(2): 1-5. | |
| YUAN J, WEI Y, WANG Z, et al. Design and implementation of switching from zero-momentum control to biased-momentum control for satellite control system[J]. Aerospace Control and Application, 2013, 39(2): 1-5 (in Chinese). | |
| [59] SUGITA M. Torque distribution algorithm for effective use of reaction wheel torques and angular momentums[J]. Acta Astronautica, 2017, 139: 18-23. | |
| [60] 洪振强, 俞洁, 刘伟, 等. 双太阳翼GEO卫星在轨角动量管控方法[J]. 上海航天(中英文), 2021, 38(6): 40-46, 70. | |
| HONG Z Q, YU J, LIU W, et al. On-orbit angular momentum management and control for GEO satellites with double solar arrays[J]. Aerospace Shanghai (Chinese & English), 2021, 38(6): 40-46, 70 (in Chinese). | |
| [61] 洪鑫, 郭尚群, 韩泉东, 等. 嫦娥五号探测器推进系统研制与飞行[J]. 推进技术, 2022, 43(10): 1-14. | |
| HONG X, GUO S Q, HAN Q D, et al. Development and flight performance of Chang’e 5 probe propulsion system[J]. Journal of Propulsion Technology, 2022, 43(10): 1-14 (in Chinese). | |
| [62] 沈自才, 张帆, 赵春晴, 等. IKAROS太阳帆的关键技术分析与启示[J]. 航天器工程, 2012, 21(2): 101-107. | |
| SHEN Z C, ZHANG F, ZHAO C Q, et al. Key technology analysis and enlightenment of IKAROS solar sail[J]. Spacecraft Engineering, 2012, 21(2): 101-107 (in Chinese). | |
| [63] SABATINI M, PALMERINI G B. Aerodynamic coordinated control of attitude and relative position of a formation of microsatellites[J]. Acta Astronautica, 2024, 224: 183-194. | |
| [64] 朱智春, 林庆国, 杭观荣, 等. 我国空间推进技术研究现状及发展[J]. 上海航天(中英文), 2021, 38(3): 178-188. | |
| ZHU Z C, LIN Q G, HANG G R, et al. Research status and development of space propulsion technology in China[J]. Aerospace Shanghai (Chinese & English), 2021, 38(3): 178-188 (in Chinese). | |
| [65] 杨维廉. 卫星轨道保持的一类控制模型[J]. 中国空间科学技术, 2001, 21(1): 11-15, 22. | |
| YANG W L. A control model for satellite orbit maintenance[J]. Chinese Space Science and Technology, 2001, 21(1): 11-15, 22 (in Chinese). | |
| [66] 李革非, 宋军, 谢剑锋. 组合体与飞船联合轨道维持[J]. 宇航学报, 2013, 34(12): 1584-1591. | |
| LI G F, SONG J, XIE J F. The complex’s and the spacecraft’s united orbit maintenances[J]. Journal of Astronautics, 2013, 34(12): 1584-1591 (in Chinese). | |
| [67] BATTIN R H. An introduction to the mathematics and methods of astrodynamics, revised edition[M]. Reston: AIAA, 1999. | |
| [68] DING J X, XU M, BAI X. An establishment and transfer strategy for formation configurations based on Ω–u torus topological equivalence[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 7411-7422. | |
| [69] HOWELL K C, BECKMAN M, PATTERSON C, et al. Representations of invariant manifolds for applications in three-body systems[J]. The Journal of the Astronautical Sciences, 2006, 54(1): 69-93. | |
| [70] 于达仁, 乔磊, 蒋文嘉, 等. 中国电推进技术发展及展望[J]. 推进技术, 2020, 41(1): 1-12. | |
| YU D R, QIAO L, JIANG W J, et al. Development and prospect of electric propulsion technology in China[J]. Journal of Propulsion Technology, 2020, 41(1): 1-12 (in Chinese). | |
| [71] SOULAS G, HAAG T, HERMAN D, et al. Performance test results of the NASA-457M v2 Hall thruster[C]∥48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012. | |
| [72] AZIZ J D, SCHEERES D J, LANTOINE G. Hybrid differential dynamic programming in the circular restricted three-body problem[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(5): 963-975. | |
| [73] CAILLAU J B, DAOUD B, GERGAUD J. Minimum fuel control of the planar circular restricted three-body problem[J]. Celestial Mechanics and Dynamical Astronomy, 2012, 114(1): 137-150. | |
| [74] GUO T D, JIANG F H, LI J F. Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization[J]. Acta Astronautica, 2012, 71: 38-50. | |
| [75] ZUO X Y, XU M, HUANG M L, et al. Maintenance strategy for elliptical orbit satellite with air-breathing electric propulsion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6863-6877. | |
| [76] WANG Z C, LI P J, ZHENG X, et al. Study on differential phase delay of same-beam VLBI in rendezvous and docking of Chang’E-5[J]. Radio Science, 2023, 58(6): e2022RS007599. | |
| [77] DE FLORIO S, D’AMICO S. The precise autonomous orbit keeping experiment on the PRISMA mission[J]. The Journal of the Astronautical Sciences, 2008, 56(4): 477-494. | |
| [78] SHARIF S, ZEADALLY S, EJAZ W. Space-aerial-ground-sea integrated networks: Resource optimization and challenges in 6G[J]. Journal of Network and Computer Applications, 2023, 215: 103647. | |
| [79] ZENG G M, ZHAN Y F, XIE H R. Channel allocation for mega LEO satellite constellations in the MEO-LEO networked telemetry system[J]. IEEE Internet of Things Journal, 2023, 10(3): 2545-2556. | |
| [80] 赵磊. 航天产业基础设施商业化发展思考与实践[J]. 中国航天, 2023(3): 54-59. | |
| ZHAO L. Reflection and practice on commercialization of space industry infrastructure[J]. Aerospace China, 2023(3): 54-59 (in Chinese). | |
| [81] 张碧雄, 巨兰. 2030年前航天测控技术发展研究[J]. 飞行器测控学报, 2010, 29(5): 11-15. | |
| ZHANG B X, JU L. Research on development of aerospace TT & C technology before 2030[J]. Journal of Spacecraft TT & C Technology, 2010, 29(5): 11-15 (in Chinese). | |
| [82] 张名毅, 邱增帅, 马双庆, 等. 小卫星总装技术发展历程与展望[J]. 航天器工程, 2021, 30(6): 106-112. | |
| ZHANG M Y, QIU Z S, MA S Q, et al. Development review and prospect of small satellite assembly technology[J]. Spacecraft Engineering, 2021, 30(6): 106-112 (in Chinese). | |
| [83] MASON L, OLESON S, JACOBSON D, et al. Nuclear power concepts and development strategies for high-power electric propulsion missions to Mars[J]. Nuclear Technology, 2022, 208(S1): S52-S66. | |
| [84] 严一粟, 郭继峰. 月球原位资源开发体系研究进展[J]. 宇航学报, 2024, 45(8): 1155-1171. | |
| YAN Y S, GUO J F. Progress of lunar in situ resource utilization system[J]. Journal of Astronautics, 2024, 45(8): 1155-1171 (in Chinese). | |
| [85] LEINZ M R, CHEN C T, BEAVEN M W, et al. Orbital express autonomous rendezvous and capture sensor system (ARCSS) flight test results[C]∥Sensors and Systems for Space Applications Ⅱ, 2008. | |
| [86] 袁利, 黄煌. 空间飞行器智能自主控制技术现状与发展思考[J]. 空间控制技术与应用, 2019, 45(4): 7-18. | |
| YUAN L, HUANG H. Current trends of spacecraft intelligent autonomous control[J]. Aerospace Control and Application, 2019, 45(4): 7-18 (in Chinese). |
| [1] | Honghong ZHANG, Wenhua LI, Jiayi ZHENG, Hongbin LIU, Peng ZHANG, Peng GAO, Xusheng GAN. Manned/unmanned aerial vehicle cooperative combat system: Concepts, technologies, and challenges [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 29653-029653. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

