Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (3): 630505.doi: 10.7527/S1000-6893.2024.30505
• Special Topic: Deep Space Optoelectronic Measurement and Intelligent Awareness Technology • Previous Articles Next Articles
Fujie WU1,2, Bowen WANG1,2(
), Jingya QI3, Mingzhi CAO1,2, Yingjun SANG1,2, Sheng LI1,2, Yuzhen ZHANG1,2, Qian CHEN1,2, Chao ZUO1,2
Received:2024-04-10
Revised:2024-06-21
Accepted:2024-07-01
Online:2024-07-17
Published:2024-07-12
Contact:
Bowen WANG
E-mail:wangbowen@njust.edu.cn
Supported by:CLC Number:
Fujie WU, Bowen WANG, Jingya QI, Mingzhi CAO, Yingjun SANG, Sheng LI, Yuzhen ZHANG, Qian CHEN, Chao ZUO. A review of airborne multi-aperture panoramic image compositing[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 630505.
| 1 | 李晟, 王博文, 管海涛, 等. 远场合成孔径计算光学成像技术: 文献综述与最新进展[J]. 光电工程, 2023, 50(10): 230090. |
| LI S, WANG B W, GUAN H T, et al. Far-field computational optical imaging techniques based on synthetic aperture: a review[J]. Opto-Electronic Engineering, 2023, 50(10): 230090 (in Chinese). | |
| 2 | 左超, 陈钱. 分辨率、超分辨率与空间带宽积拓展: 从计算光学成像角度的一些思考[J]. 中国光学(中英文), 2022, 15(6): 1105-1166. |
| ZUO C, CHEN Q. Resolution, super-resolution and spatial bandwidth product expansion: Some thoughts from the perspective of computational optical imaging[J]. Chinese Optics, 2022, 15(6): 1105-1166 (in Chinese). | |
| 3 | 左超, 陈钱. 计算光学成像: 何来,何处,何去,何从?[J]. 红外与激光工程, 2022, 51(2): 3788/IRLA20220110. |
| ZUO C, CHEN Q. Computational optical imaging: An overview[J]. Infrared and Laser Engineering, 2022, 51(2): 3788/IRLA20220110 (in Chinese). | |
| 4 | LI Z Q, ISLER V. Large scale image mosaic construction for agricultural applications[J]. IEEE Robotics and Automation Letters, 2016, 1(1): 295-302. |
| 5 | GUI Z C, LI H F. Automated defect detection and visualization for the robotic airport runway inspection[J]. IEEE Access, 2020, 8: 76100-76107. |
| 6 | DAVID JENKINS M, BUGGY T, MORISON G. An imaging system for visual inspection and structural condition monitoring of railway tunnels[C]∥2017 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS). Piscataway: IEEE Press, 2017: 1-6. |
| 7 | LI M, LI D, FAN D. A study on automatic UAV image mosaic method for paroxysmal disaster[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, XXXIX-B6: 123-128. |
| 8 | IVEZIĆ Ž, CONNOLLY A J, JURIĆ M. Everything we’d like to do with LSST data, but we don’t know (yet) how[J]. Proceedings of the International Astronomical Union, 2016, 12(S325): 93-102. |
| 9 | NEILL D, ANGELI G, CLAVER C, et al. Overview of the LSST active optics system[J]. Proceedings of SPIE, 2014, 9150: 143-158. |
| 10 | YUAN X Y, FANG L, DAI Q H, et al. Multiscale gigapixel video: A cross resolution image matching and warping approach[C]∥2017 IEEE International Conference on Computational Photography (ICCP). Piscataway: IEEE Press, 2017: 1-9. |
| 11 | YUAN X Y, JI M Q, WU J M, et al. A modular hierarchical array camera[J]. Light, Science & Applications, 2021, 10(1): 37. |
| 12 | LLULL P, BANGE L, PHILLIPS Z, et al. Characterization of the AWARE 40 wide-field-of-view visible imager[J]. Optica, 2015, 2(12): 1086. |
| 13 | 刘飞, 刘佳维, 邵晓鹏. 高集成度小型化共心多尺度光学系统设计[J]. 光学 精密工程, 2020, 28(6): 1275-1282. |
| LIU F, LIU J W, SHAO X P. Design of high integration and miniaturization concentric multiscale optical system[J]. Optics and Precision Engineering, 2020, 28(6): 1275-1282 (in Chinese). | |
| 14 | 方璐, 戴琼海. 计算光场成像[J]. 光学学报, 2020, 40(1): 0111001. |
| FANG L, DAI Q H. Computational light field imaging[J]. Acta Optica Sinica, 2020, 40(1): 0111001 (in Chinese). | |
| 15 | 邵晓鹏, 刘飞, 李伟, 等. 计算成像技术及应用最新进展[J]. 激光与光电子学进展, 2020, 57(2): 11-55. |
| SHAO X P, LIU F, LI W, et al. Latest progress in computational imaging technology and application[J]. Laser & Optoelectronics Progress, 2020, 57(2): 11-55 (in Chinese). | |
| 16 | 周亮, 刘凯, 刘朝晖, 等. 光学复用大视场成像研究[J]. 光子学报, 2020, 49(9): 132-138. |
| ZHOU L, LIU K, LIU Z H, et al. Optically multiplexed imaging for increased field of view[J]. Acta Photonica Sinica, 2020, 49(9): 132-138 (in Chinese). | |
| 17 | WANG B W, LI S, CHEN Q, et al. Learning-based single-shot long-range synthetic aperture Fourier ptychographic imaging with a camera array[J]. Optics Letters, 2023, 48(2): 263-266. |
| 18 | YANG F, WU J C, GAO Y H, et al. A four-aperture super-resolution camera based on adaptive regularization parameter tuning[J]. Optics and Lasers in Engineering, 2023, 165: 107562. |
| 19 | HOLLOWAY J, ASIF M S, SHARMA M K, et al. Toward long-distance subdiffraction imaging using coherent camera arrays[J]. IEEE Transactions on Computational Imaging, 2016, 2(3): 251-265. |
| 20 | 李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 25(1): 148-166. |
| LI S T, LI C Y, KANG X D. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 25(1): 148-166 (in Chinese). | |
| 21 | 李赛, 尹球, 胡勇, 等. 基于SPHP的推扫式高光谱航空影像拼接[J]. 红外与毫米波学报, 2021, 40(1): 64-73. |
| LI S, YIN Q, HU Y, et al. A push-sweep hyperspectral aerial image Mosaic method based on SPHP[J]. Journal of Infrared and Millimeter Waves, 2021, 40(1): 64-73 (in Chinese). | |
| 22 | 李俊杰, 姜涛, 傅俏燕. “高分一号” 卫星多光谱宽幅相机影像合成[J]. 航天返回与遥感, 2020, 41(5): 95-101. |
| LI J J, JIANG T, FU Q Y. Cloud-free image composite of GF-1 wide field of view camera[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(5): 95-101 (in Chinese). | |
| 23 | 易俐娜, 许筱, 张桂峰, 等. 轻小型无人机高光谱影像拼接研究[J]. 光谱学与光谱分析, 2019, 39(6): 1885-1891. |
| YI L N, XU X, ZHANG G F, et al. Light and small UAV hyperspectral image mosaicking[J]. Spectroscopy and Spectral Analysis, 2019, 39(6): 1885-1891 (in Chinese). | |
| 24 | WANG B W, ZOU Y, ZHANG L F, et al. Multimodal super-resolution reconstruction of infrared and visible images via deep learning[J]. Optics and Lasers in Engineering, 2022, 156: 107078. |
| 25 | CHANDEL R, GUPTA G. Image filtering algorithms and techniques: A review[J]. International Journal of Advanced Research in Computer Science and Software Engineering, 2013, 3(10): 1-10. |
| 26 | BANG S, KIM H, KIM H. UAV-based automatic generation of high-resolution panorama at a construction site with a focus on preprocessing for image stitching[J]. Automation in Construction, 2017, 84: 70-80. |
| 27 | VAIDYA O S, GANDHE S T. The study of preprocessing and postprocessing techniques of image stitching[C]∥2018 International Conference on Advances in Communication and Computing Technology (ICACCT). Piscataway: IEEE Press, 2018: 431-435. |
| 28 | 周前飞, 刘晶红, 居波, 等. 面阵CCD航空相机斜视图像的几何校正[J]. 液晶与显示, 2015, 30(3): 505-513. |
| ZHOU Q F, LIU J H, JU B, et al. Geometric correction of oblique images for array CCD aerial cameras[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(3): 505-513 (in Chinese). | |
| 29 | LIU B, XIAO Q, ZHANG Y H, et al. Intelligent recognition method of low-altitude squint optical ship target fused with simulation samples[J]. Remote Sensing, 2021, 13(14): 2697. |
| 30 | BROWN L G. A survey of image registration techniques[J]. ACM Computing Surveys, 1992, 24(4): 325-376. |
| 31 | ZITOVÁ B, FLUSSER J. Image registration methods: A survey[J]. Image and Vision Computing, 2003, 21(11): 977-1000. |
| 32 | WANG Z J, ZIOU D, ARMENAKIS C, et al. A comparative analysis of image fusion methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6): 1391-1402. |
| 33 | KAUR H, KOUNDAL D, KADYAN V. Image fusion techniques: A survey[J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4425-4447. |
| 34 | XIONG Z, ZHANG Y. A critical review of image registration methods[J]. International Journal of Image and Data Fusion, 2010, 1(2): 137-158. |
| 35 | RAO Y R, PRATHAPANI N, NAGABHOOSHANAM E. Application of normalized cross correlation to image registration[J]. International Journal of Research in Engineering and Technology, 2014, 3(5): 12-16. |
| 36 | KYBIC J, UNSER M. Fast parametric elastic image registration[J]. IEEE Transactions on Image Processing, 2003, 12(11): 1427-1442. |
| 37 | BARNEA D I, SILVERMAN H F. A class of algorithms for fast digital image registration[J]. IEEE Transactions on Computers, 1972, C-21(2): 179-186. |
| 38 | KUGLIN C D, HINES D C. The phase correlation image alignment method[C]∥IEEE International Conference on Cybernetics and Society, 1975: 163-165. |
| 39 | DE CASTRO E, MORANDI C. Registration of translated and rotated images using finite Fourier transforms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, PAMI-9(5): 700-703. |
| 40 | 杨必武, 郭晓松, 赵敬民, 等. 基于小波变换的视差图像全局几何配准新算法[J]. 光子学报, 2007, 36(3): 574-576. |
| YANG B W, GUO X S, ZHAO J M, et al. An algorithm on geometric global registration of parallax images based on wavelet transform[J]. Acta Photonica Sinica, 2007, 36(3): 574-576 (in Chinese). | |
| 41 | 李培, 姜刚, 马千里, 等. 结合张量与互信息的混合模型多模态图像配准方法[J]. 测绘学报, 2021, 50(7): 916-929. |
| LI P, JIANG G, MA Q L, et al. A hybrid model combining tensor and mutual information for multi-modal image registration[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 916-929 (in Chinese). | |
| 42 | 凌志刚, 潘泉, 程咏梅, 等. 一种结合梯度方向互信息和多分辨混合优化的多模图像配准方法[J]. 光子学报, 2010, 39(8): 1359-1366. |
| LING Z G, PAN Q, CHENG Y M, et al. A multimodal image registration method combining gradient orientation mutual information with multi-resolution hybrid optimization algorithm[J]. Acta Photonica Sinica, 2010, 39(8): 1359-1366 (in Chinese). | |
| 43 | 吴泽鹏, 郭玲玲, 朱明超, 等. 结合图像信息熵和特征点的图像配准方法[J]. 红外与激光工程, 2013, 42(10): 2846-2852. |
| WU Z P, GUO L L, ZHU M C, et al. Improved image registration using feature points combined with image entropy[J]. Infrared and Laser Engineering, 2013, 42(10): 2846-2852 (in Chinese). | |
| 44 | BAJCSY R, KOVAČIČ S. Multiresolution elastic matching[J]. Computer Vision, Graphics, and Image Processing, 1989, 46(1): 1-21. |
| 45 | CHRISTENSEN G E, RABBITT R D, MILLER M I. Deformable templates using large deformation kinematics[J]. IEEE Transactions on Image Processing, 1996, 5(10): 1435-1447. |
| 46 | BEAUCHEMIN S S, BARRON J L. The computation of optical flow[J]. ACM Computing Surveys, 1995, 27(3): 433-466. |
| 47 | MORAVEC H P. Obstacle avoidance and navigation in the real world by a seeing robot rover[D]. Stanford: Stanford University, 1980. |
| 48 | HARRIS C, STEPHENS M. A combined corner and edge detector[C]∥Proceedings of the Alvey Vision Conference, 1988. |
| 49 | SHI J B, TOMASI C. Good features to track[C]∥1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2002: 593-600. |
| 50 | SMITH S M, BRADY J M. SUSAN: A new approach to low level image processing[J]. International Journal of Computer Vision, 1997, 23(1): 45-78. |
| 51 | LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. |
| 52 | BAY H, TUYTELAARS T, VAN GOOL L. SURF: Speeded up robust features[M]∥Computer Vision- ECCV 2006. Berlin, Heidelberg: Springer, 2006: 404-417. |
| 53 | RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]∥2011 International Conference on Computer Vision. Piscataway: IEEE Press, 2011: 2564-2571. |
| 54 | ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection[M]∥Computer Vision- ECCV 2006. Berlin, Heidelberg: Springer, 2006: 430-443. |
| 55 | CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: Binary robust independent elementary features[M]∥Computer Vision-ECCV 2010. Berlin, Heidelberg: Springer, 2010: 778-792. |
| 56 | ZARAGOZA J, CHIN T J, BROWN M S, et al. As-projective-as-possible image stitching with moving DLT[C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2013: 2339-2346. |
| 57 | CHANG C H, SATO Y, CHUANG Y Y. Shape-preserving half-projective warps for image stitching[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 3254-3261. |
| 58 | LIN C C, PANKANTI S U, RAMAMURTHY K N, et al. Adaptive as-natural-as-possible image stitching[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 1155-1163. |
| 59 | CHEN Y-S, CHUANG Y Y. Natural image stitching with the global similarity prior[M]∥Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 186-201. |
| 60 | SUN L, WANG S Q, XING J C. An improved Harris corner detection algorithm for low contrast image[C]∥The 26th Chinese Control and Decision Conference (2014 CCDC). Piscataway: IEEE Press, 2014: 3039-3043. |
| 61 | HAN C, YOU F C, WANG S M. An improved Harris corner detection algorithm based on adaptive gray threshold[C]∥2019 4th International Conference on Automatic Control and Mechatronic Engineering (ACME 2019). 2019: 1-5. |
| 62 | CUI J, XIE J B, LIU T, et al. Corners detection on finger vein images using the improved Harris algorithm[J]. Optik, 2014, 125(17): 4668-4671. |
| 63 | KE Y, SUKTHANKAR R. PCA-SIFT: A more distinctive representation for local image descriptors[C]∥Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2004. |
| 64 | MOREL J M, YU G S. ASIFT: A new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 438-469. |
| 65 | HOSSEIN-NEJAD Z, AGAHI H, MAHMOODZADEH A. Image matching based on the adaptive redundant keypoint elimination method in the SIFT algorithm[J]. Pattern Analysis and Applications, 2021, 24(2): 669-683. |
| 66 | MA W P, WEN Z L, WU Y, et al. Remote sensing image registration with modified SIFT and enhanced feature matching[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 3-7. |
| 67 | CHEN Y, SHANG L. Improved SIFT image registration algorithm on characteristic statistical distributions and consistency constraint[J]. Optik, 2016, 127(2): 900-911. |
| 68 | PATEL M I, THAKAR V K, SHAH S K. Image registration of satellite images with varying illumination level using HOG descriptor based SURF[J]. Procedia Computer Science, 2016, 93: 382-388. |
| 69 | SHENG H Y, WEI S M, YU X L, et al. Research on binocular visual system of robotic arm based on improved SURF algorithm[J]. IEEE Sensors Journal, 2020, 20(20): 11849-11855. |
| 70 | XIE Y G, WANG Q, CHANG Y X, et al. Fast target recognition based on improved ORB feature[J]. Applied Sciences, 2022, 12(2): 786. |
| 71 | SUN H, WANG P, ZHANG D, et al. An improved ORB algorithm based on optimized feature point extraction[C]∥2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). IEEE, 2020: 389-394. |
| 72 | ZHANG Z Y, WANG L X, ZHENG W F, et al. Endoscope image mosaic based on pyramid ORB[J]. Biomedical Signal Processing and Control, 2022, 71: 103261. |
| 73 | ZHANG W N. Combination of SIFT and canny edge detection for registration between SAR and optical images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 4007205. |
| 74 | LIU W X, CHIN T J. Correspondence insertion for as-projective-as-possible image stitching[DB/OL]. arXiv preprint: 1608.07997, 2016. |
| 75 | LI N, XU Y F, WANG C. Quasi-homography warps in image stitching[J]. IEEE Transactions on Multimedia, 2018, 20(6): 1365-1375. |
| 76 | LIAO T L, LI N. Single-perspective warps in natural image stitching[J]. IEEE Transactions on Image Processing, 2019. |
| 77 | JIA Q, LI Z J, FAN X, et al. Leveraging line-point consistence to preserve structures for wide parallax image stitching[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 12181-12190. |
| 78 | GAO J, LI Y, CHIN T J, et al. Seam-driven image stitching[C]∥Eurographics 2013 (Short Papers). Girona: The Eurographics Association, 2013: 45-48. |
| 79 | LIN K M, JIANG N J, CHEONG L F, et al. SEAGULL: Seam-guided local alignment for parallax-tolerant image stitching[M]∥Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 370-385. |
| 80 | LI N, LIAO T, WANG C. Perception-based energy functions in seam-cutting[J]. arXiv preprint: 1701.06141, 2017. |
| 81 | LIAO T L, CHEN J, XU Y F. Quality evaluation-based iterative seam estimation for image stitching[J]. Signal, Image and Video Processing, 2019, 13(6): 1199-1206. |
| 82 | YUAN Y T, FANG F M, ZHANG G X. Superpixel-based seamless image stitching for UAV images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2): 1565-1576. |
| 83 | CHEN X, YU M, SONG Y. Optimized seam-driven image stitching method based on scene depth information[J]. Electronics, 2022, 11(12): 1876. |
| 84 | LI S T, KANG X D, FANG L Y, et al. Pixel-level image fusion: A survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. |
| 85 | SUN J G, HAN Q L, KOU L, et al. Multi-focus image fusion algorithm based on Laplacian Pyramids[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2018, 35(3): 480-490. |
| 86 | AMOLINS K, ZHANG Y, DARE P. Wavelet based image fusion techniques: An introduction, review and comparison[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(4): 249-263. |
| 87 | NENCINI F, GARZELLI A, BARONTI S, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156. |
| 88 | ZHANG Q, LIU Y, BLUM R S, et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: A review[J]. Information Fusion, 2018, 40: 57-75. |
| 89 | SAHU D, PARSAI M P. Different image fusion techniques-a critical review[J]. International Journal of Modern Engineering Research (IJMER), 2012, 2(5): 4298-4301. |
| 90 | YANG Y, WAN W G, HUANG S Y, et al. Remote sensing image fusion based on adaptive IHS and multiscale guided filter[J]. IEEE Access, 2016, 4: 4573-4582. |
| 91 | DESALE R P, VERMA S V. Study and analysis of PCA, DCT & DWT based image fusion techniques[C]∥2013 International Conference on Signal Processing, Image Processing & Pattern Recognition. Piscataway: IEEE Press, 2013: 66-69. |
| 92 | MITIANOUDIS N, STATHAKI T. Pixel-based and region-based image fusion schemes using ICA bases[J]. Information Fusion, 2007, 8(2): 131-142. |
| 93 | TANG L, ZHAO Z G. Multiresolution image fusion based on the wavelet-based contourlet transform[C]∥2007 10th International Conference on Information Fusion. Piscataway: IEEE Press, 2007: 1-6. |
| 94 | LIU Y, LIU S P, WANG Z F. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. |
| 95 | LIU Y, CHEN X, WARD R K, et al. Medical image fusion via convolutional sparsity based morphological component analysis[J]. IEEE Signal Processing Letters, 2019, 26(3): 485-489. |
| 96 | TU T M, SU S C, SHYU H C, et al. A new look at IHS-like image fusion methods[J]. Information Fusion, 2001, 2(3): 177-186. |
| 97 | RAHMANI S, STRAIT M, MERKURJEV D, et al. An adaptive IHS pan-sharpening method[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 746-750. |
| 98 | GHAHREMANI M, GHASSEMIAN H. Nonlinear IHS: A promising method for pan-sharpening[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1606-1610. |
| 99 | BURT P, ADELSON E. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 1983, 31(4): 532-540. |
| 100 | TOET A. Image fusion by a ratio of low-pass pyramid[J]. Pattern Recognition Letters, 1989, 9(4): 245-253. |
| 101 | SIMONCELLI E P, FREEMAN W T. The steerable pyramid: A flexible architecture for multi-scale derivative computation[C]∥Proceedings International Conference on Image Processing. Piscataway: IEEE Press, 1995: 444-447. |
| 102 | MALLAT S G. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693. |
| 103 | YANG Y. A novel DWT based multi-focus image fusion method[J]. Procedia Engineering, 2011, 24: 177-181. |
| 104 | CAO W, LI B C, ZHANG Y. A remote sensing image fusion method based on PCA transform and wavelet packet transform[C]∥International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003. Piscataway: IEEE Press, 2003: 976-981. |
| 105 | SELESNICK I W, BARANIUK R G, KINGSBURY N C. The dual-tree complex wavelet transform[J]. IEEE Signal Processing Magazine, 2005, 22(6): 123-151. |
| 106 | GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010. |
| 107 | CANDÈS E J, DONOHO D L. Ridgelets: A key to higher-dimensional intermittency?[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1999, 357(1760): 2495-2509. |
| 108 | STARCK J L, CANDÈS E J, DONOHO D L. The curvelet transform for image denoising[J]. IEEE Transactions on Image Processing, 2002, 11(6): 670-684. |
| 109 | DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106. |
| 110 | CUNHA A L DA, ZHOU J, DO M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101. |
| 111 | 蒋婷婷, 王敬东, 李鹏. 基于Curvelet变换和小波变换相结合的图像融合算法研究[J]. 光电子技术, 2010, 30(2): 111-116. |
| JIANG T T, WANG J D, LI P. Research on multifocus image fusion algorithm by combining Curvelet transform and wavelet transform[J]. Optoelectronic Technology, 2010, 30(2): 111-116 (in Chinese). | |
| 112 | ARIF M, WANG G J. Fast curvelet transform through genetic algorithm for multimodal medical image fusion[J]. Soft Computing, 2020, 24(3): 1815-1836. |
| 113 | ZHANG H, XU H, TIAN X, et al. Image fusion meets deep learning: A survey and perspective[J]. Information Fusion, 2021, 76: 323-336. |
| 114 | KARIM S, TONG G, LI J Y, et al. Current advances and future perspectives of image fusion: A comprehensive review[J]. Information Fusion, 2023, 90: 185-217. |
| 115 | AZARANG A, MANOOCHEHRI H E, KEHTAR⁃NAVAZ N. Convolutional autoencoder-based multispectral image fusion[J]. IEEE Access, 2019, 7: 35673-35683. |
| 116 | PRABHAKAR K R, SRIKAR V S, BABU R V. DeepFuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 4724-4732. |
| 117 | LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623. |
| 118 | LIU Y, CHEN X, CHENG J, et al. A medical image fusion method based on convolutional neural networks[C]∥2017 20th International Conference on Information Fusion (Fusion). Piscataway: IEEE Press, 2017: 1-7. |
| 119 | ZHANG H, XU H, XIAO Y, et al. Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12797-12804. |
| 120 | MA J Y, YU W, CHEN C, et al. Pan-GAN: An unsupervised pan-sharpening method for remote sensing image fusion[J]. Information Fusion, 2020, 62: 110-120. |
| 121 | XU H, MA J Y, ZHANG X P. MEF-GAN: Multi-exposure image fusion via generative adversarial networks[J]. IEEE Transactions on Image Processing, 2020, 29: 7203-7216. |
| 122 | RAO Y J, WU D, HAN M N, et al. AT-GAN: A generative adversarial network with attention and transition for infrared and visible image fusion[J]. Information Fusion, 2023, 92: 336-349. |
| 123 | MA J Y, YU W, LIANG P W, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. |
| 124 | MA J Y, XU H, JIANG J J, et al. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020. |
| 125 | 朱雯青, 张宁, 李争, 等. 基于多任务卷积神经网络的红外与可见光多分辨率图像融合[J]. 光谱学与光谱分析, 2023, 43(1): 289-296. |
| ZHU W Q, ZHANG N, LI Z, et al. A multi-task convolutional neural network for infrared and visible multi-resolution image fusion[J]. Spectroscopy and Spectral Analysis, 2023, 43(1): 289-296 (in Chinese). | |
| 126 | WANG J X, XI X L, LI D M, et al. GRPAFusion: A gradient residual and pyramid attention-based multiscale network for multimodal image fusion[J]. Entropy, 2023, 25(1): 169. |
| 127 | LIU D, YANG F B, WEI H,et al. Remote sensing image fusion method based on discrete wavelet and multiscale morphological transform in the IHS color space[J]. Journal of Applied Remote Sensing, 2020, 14(1): 016518. |
| 128 | SHARMA M. A review : Image fusion techniques and applications[J]. International Journal of Computer Science and Information Technologies, 2016, 7(3): 1082-1085. |
| 129 | LU N, WU Y P, ZHENG H B, et al. An assessment of multi-view spectral information from UAV-based color-infrared images for improved estimation of nitrogen nutrition status in winter wheat[J]. Precision Agriculture, 2022, 23(5): 1653-1674. |
| 130 | TRINIDAD M C, MARTIN-BRUALLA R, KAINZ F, et al. Multi-view image fusion[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019: 4101-4110. |
| 131 | WANG D, CUI X R, CHEN X, et al. Multi-view 3D reconstruction with transformers[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 5702-5711. |
| 132 | SONG D, ZHANG Z Q, LI W H, et al. Judgment of benign and early malignant colorectal tumors from ultrasound images with deep multi-view fusion[J]. Computer Methods and Programs in Biomedicine, 2022, 215: 106634. |
| 133 | AMIN-NAJI M, AGHAGOLZADEH A, EZOJI M. Ensemble of CNN for multi-focus image fusion[J]. Information Fusion, 2019, 51: 201-214. |
| 134 | QIN X M, BAN Y X, WU P, et al. Improved image fusion method based on sparse decomposition[J]. Electronics, 2022, 11(15): 2321. |
| 135 | LIU Y, WANG L, LI H F, et al. Multi-focus image fusion with deep residual learning and focus property detection[J]. Information Fusion, 2022, 86: 1-16. |
| 136 | MUCHONEY D, HAACK B. Change detection for monitoring forest defoliation[J]. Photogrammetric Engineering and Remote Sensing, 2007, 60: 1243-1251. |
| 137 | EZIMAND K, CHAHARDOLI M, AZADBAKHT M, et al. Spatiotemporal analysis of land surface temperature using multi-temporal and multi-sensor image fusion techniques[J]. Sustainable Cities and Society, 2021, 64: 102508. |
| 138 | SAUR G, KRÜGER W. Change detection in UAV video mosaics combining a feature based approach and extended image differencing[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B7: 557-562. |
| 139 | WILBURN B, JOSHI N, VAISH V, et al. High-speed videography using a dense camera array[C]∥Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2004. |
| 140 | WILBURN B, JOSHI N, VAISH V, et al. High performance imaging using large camera arrays[J]. ACM Transactions on Graphics, 2005, 24(3): 765-776. |
| [1] | Shaoyi LI, Mengjie WEI, Junyan YANG, Xi YANG, Zhongjie MENG. Research status and prospects of infrared multi-band imaging terminal guidance technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 630427-630427. |
| [2] | Chuankai LIU, Zhaoxiang WANG, Junxiong LEI, Zuoyu ZHANG, Kuangang FAN, Jitao ZHANG, Xiaoxue WANG, Hailang PAN, Jianguo LIU. An epipolar relaxation constrained matching algorithm of large-affined images for lunar rover with large span distance in a single movement [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 328659-328659. |
| [3] | Zheng YE, Daiyin ZHU, Di WU. SAR image registration algorithm based on echo information of overlapping subaperture [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 327254-327254. |
| [4] | SUN Xiuyi, HU Shaohai, MA Xiaole. Infrared and visible image fusion based on unsupervised deep learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 726938-726938. |
| [5] | WANG Huaxia, CHENG Yongmei, LIU Nan. A robust scene matching method for mountainous regions with illumination variation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(10): 321101-321101. |
| [6] | LIU Zhongjie, CAO Yunfeng, ZHUANG Likui, DING Meng. Applied Research on Airborne SAR and Optical Image Registration Based on Control Line Method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(9): 2194-2201. |
| [7] | SHEN Hao, LI Shuxiao, SHEN Yiping, ZHU Chengfei, CHANG Hongxing. Fast Interframe Registration Method in Aerial Videos [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(6): 1405-1413. |
| [8] | LIAO Chao, WANG Guijin, SHEN Yongling, HE Bei, LIN Xinggang. Aerial Video Stitching via Multi-direction Strips [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(11): 2065-2073. |
| [9] | YI Meng, GUO Baolong. Aerial Video Image Registration Method Based on Invariant Features and Mapping Restraint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(10): 1872-1880. |
| [10] | LONG Yunli, XU Hui, AN Wei, LIN Liangkui. Spatial-temporal Fused Filtering for Infrared Clutter Suppression Based on Restricted Sequential M-estimation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(8): 1531-1541. |
| [11] | Yang Huijuan;Zhang Jianqiu;Hu Bo. Residual Error Hypercomplex Symplectic Decomposition Approach to Multispectral and Panchromatic Image Fusions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(3): 490-496. |
| [12] | Wang Yunli;Zhang Xin;Gao Chao;Wang Hui;Zhang Maojun. Feature Matching Based Global Motion Estimation in Aerial Video Mosaicing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 29(5): 1218-1225. |
| [13] | NIU Li-pi;MAO Shi-yi;CHEN Wei. Multi-Sensor Image Registration Method Adapted for Larger Scale [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(3): 475-480. |
| [14] | XU Dong;AN Jin-wen. Global Motion Estimation by Fitting Optical Flow in Aerial Video Imagery [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(1): 94-97. |
| [15] | YU Zhen-ming;MAO Shi-yi;GAO Fei. A Multi-Focus Image Fusion Method Based on Gabor Filter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(2): 219-223. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

