Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (1): 30467.doi: 10.7527/S1000-6893.2024.30467
• Reviews • Previous Articles Next Articles
Xiping KOU1,2, Kaichun ZENG2, Tao MA3, Bo LU2, Zhichun YANG1()
Received:
2024-03-29
Revised:
2024-05-15
Accepted:
2024-06-14
Online:
2025-01-15
Published:
2024-07-11
Contact:
Zhichun YANG
E-mail:yangzc@nwpu.edu.cn
Supported by:
CLC Number:
Xiping KOU, Kaichun ZENG, Tao MA, Bo LU, Zhichun YANG. Model vibration mechanism and active control in wind tunnel test: Review[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 30467.
1 | 王发祥. 高速风洞试验[M]. 北京: 国防工业出版社, 2003. |
WANG F X. High speed wind tunnel test[M]. Beijing: National Defence Industry Press, 2003 (in Chinese). | |
2 | MABEY D G, WELSH B L, PYNE C R. A review of rigid body response on sting supported models at high angles of incidence[J]. Progress in Aerospace Sciences, 1991, 28(2): 133-170. |
3 | QUIX H, QUEST J. Assessing model dynamics within the critical alpha range[C]∥Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
4 | 郭旭, 赵岩. 大型风洞设计建设中的结构力学问题[J]. 中国科学基金, 2017, 5(9): 432-437. |
GUO X, ZHAO Y. Structure mechanics problems in the large scale wind tunnel design and building[J]. Bulletin of National Natural Science Foundation of China, 2017, 5(9): 432-437 (in Chinese). | |
5 | YOUNG C, POPERNACK T, GLOSS B. National transonic facility model and model support vibration problems[C]∥Proceedings of the 16th Aerodynamic Ground Testing Conference. Reston: AIAA, 1990. |
6 | KILGORE W, BALAKRISHNA S, BUTLER D. Reduction of tunnel dynamics at the National Transonic Facility[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
7 | PARKER R. Resonance effects in wake shedding from parallel plates: Calculation of resonant frequencies[J]. Journal of Sound Vibration, 1967, 5(2): 330-343. |
8 | EDWARDS J W. National transonic facility model and tunnel vibrations[J]. Journal of Aircraft, 2009, 46(1): 46-52. |
9 | FUYKSCHOT P, KOOI J. Stall flutter of sting-supported wind tunnel models[C]∥24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2004. |
10 | RIVERS M B, BALAKRISHNA S. NASA common research model test envelope extension with active sting damping at NTF[C]∥32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014. |
11 | 李山青, 刘正兴, 杨耀文. 压电材料在智能结构形状和振动控制中的应用[J]. 力学进展, 1999, 29(1): 66. |
LI S Q, LIU Z X, YANG Y W. The applications of piezoelectric materials on shape control and vibration control of smart structures [J]. Advances in Mechanics, 1999, 29(1): 66 (in Chinese). | |
12 | 梁鉴, 张卫国, 王勋年, 等. 4 m×3 m风洞无人机模型振动抑制系统研制[J]. 实验流体力学, 2007, 21(4): 65-70. |
LIANG J, ZHANG W G, WANG X N, et al. Development for restraining oscillation device of the UAV model in the 4 m × 3 m wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4): 65-70 (in Chinese). | |
13 | 路波, 寇西平, 曾开春, 等. 风洞常规试验模型尾支杆减振装置: CN208765926U[P]. 2019-04-19. |
LU B, KOU X P, ZENG K C, et al. Wind tunnel test model tail sting vibration damping device: CN208765926U[P]. 2019-04-19 (in Chinese). | |
14 | ĆURČIĆ D, SAMARDŽIĆ M, MARINKOVSKI D, et al. Model sting support with hard metal core for measurement in the blowdown pressurized wind tunnel[J]. Measurement, 2016, 79: 130-136. |
15 | 赖志伟, 王成勇, 郑李娟, 等. 硬质合金激光加工研究进展[J]. 硬质合金, 2022, 39(5): 335-349. |
LAI Z W, WANG C Y, ZHENG L J, et al. Research progress of laser processing of cemented carbide[J]. Cemented Carbide, 2022, 39(5): 335-349 (in Chinese). | |
16 | 刘光远. 蜂窝结构支杆测试验证试验[R]. 绵阳: 中国空气动力研究与发展中心, 2022. |
LIU G Y. Verification test on honeycomb structure sting [R]. Mianyang: China Aerodynamics Research and Development Center, 2022 (in Chinese). | |
17 | GLAESE R, BALES G, HSU S, et al. Reduction of dynamic response of a wind tunnel sting mount using a hub damper unit[C]∥48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
18 | HSU S, MOR M, STIRLING B, et al. Reduction of dynamic response of a wind tunnel sting mount using co-cured composite and viscoelastic materials[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
19 | PAN J H, LIU Z Q, KOU X P, et al. Constrained layer damping treatment of a model support sting[J]. Chinese Journal of Aeronautics, 2021, 34(8): 58-64. |
20 | 常冠军. 粘弹性阻尼材料[M]. 北京: 国防工业出版社, 2012. |
CHANG G J. Viscoelastic damping materials[M]. Beijing: National Defense Industry Press, 2012 (in Chinese). | |
21 | WILLIAN B I, FRANCIS J C. Reduction of wind-tunnel-model vibration by means of a tuned damped vibration absorber installed in the model: NASA TM X-1606[R]. Washington, D.C.: NASA, 1968. |
22 | MABEY D G, ASHILL P R, WELSH B L. Aeroelastic oscillations caused by transitional boundary layers and their attenuation[J]. Journal of Aircraft, 1987, 24(7): 463-469. |
23 | 陈卫东, 邵敏强, 杨兴华, 等. 跨声速风洞测力模型主动减振系统的试验研究[J]. 振动工程学报, 2007, 20(1): 91-96. |
CHEN W D, SHAO M Q, YANG X H, et al. Experimental evaluation of an active vibration control system for wind tunnel aerodynamic models[J]. Journal of Vibration Engineering, 2007, 20(1): 91-96 (in Chinese). | |
24 | 邵敏强. 复杂激励环境下分布式结构的振动主动控制研究[D]. 南京: 南京航空航天大学, 2012: 105-116. |
SHAO M Q. Research on active vibration control of distributed structure under complex excitation environment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 105-116 (in Chinese). | |
25 | 姚晓成, 赵程, 曾涛. 压电材料在振动控制领域的研究进展与应用现状[J]. 机械工程材料, 2019, 43(6): 72-76. |
YAO X C, ZHAO C, ZENG T. Research progress and application status of piezoelectric materials for vibration control[J]. Materials for Mechanical Engineering, 2019, 43(6): 72-76 (in Chinese). | |
26 | WIMMEL R, FEHREN H, GNAUERT U, et al. 5 dof active vibration control with a piezoceramic driven multifunctional interface for high load application[C]∥Seventh International Conference on Adaptive Structures, 1997: 61-70 |
27 | 鲁继文. 风洞模型支杆系统设计及振动主动控制[D]. 大连: 大连理工大学, 2018: 6-10. |
LU J W. Design of wind tunnel model strut system and active vibration control[D]. Dalian: Dalian University of Technology, 2018: 6-10 (in Chinese) . | |
28 | 沈星, 涂凡凡, 陈金金, 等. 风洞悬臂杆结构主动减振系统的研究[J]. 振动、测试与诊断, 2014, 34(3): 414-419. |
SHEN X, TU F F, CHEN J J, et al. Study on active vibration reduction system of cantilever bar structure in wind tunnel[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(3): 414-419 (in Chinese). | |
29 | CHEN J J, SHEN X, TU F F, et al. Experimental research on an active sting damper in a low speed acoustic wind tunnel[J]. Shock and Vibration, 2014, 2014(1): 524351. |
30 | BALAKRISHNA S, HOULDEN H, BUTLER D, et al. Development of a wind tunnel active vibration reduction system[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
31 | 涂凡凡. 人工神经网络在压电主动减振系统中的应用研究[D]. 南京: 南京航空航天大学, 2013: 38-39. |
TU F F. Application of artificial neural network in piezoelectric active vibration reduction system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 38-39 (in Chinese). | |
32 | FEHREN H, GNAUERT U, WIMMEL R, et al. Validation testing with the active damping system in the European Transonic Windtunnel[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
33 | 杨智春, 王巍, 谷迎松, 等. 一种弯曲型压电堆作动器的设计及在振动控制中的应用[J]. 振动与冲击, 2009, 28(9): 130-134. |
YANG Z C, WANG W, GU Y S, et al. Smart structure vibration control using a new bending type of piezoelectric stack actuator[J]. Journal of Vibration and Shock, 2009, 28(9): 130-134 (in Chinese). | |
34 | 宋来收, 夏品奇. 采用压电叠层作动器的弹性梁振动主动控制实验研究[J]. 航空学报, 2014, 35(1): 171-178. |
SONG L S, XIA P Q. Experimental investigation on active vibration control of elastic beam by using piezoelectric stack actuator[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 171-178 (in Chinese). | |
35 | 刘伟国. 支杆式风洞模型主动振动抑制控制方法研究[D]. 大连: 大连理工大学, 2015: 43-78. |
LIU W G. Research on active vibration suppression control method of strut wind tunnel model[D]. Dalian: Dalian University of Technology, 2015: 43-78 (in Chinese). | |
36 | 姜尔东. 支杆式风洞模型主动振动抑制方法与实验研究[D]. 大连: 大连理工大学, 2014: 23-54. |
JIANG E D. Method and experiment research on the active vibration control of wind tunnel model with sting support[D]. Dalian: Dalian University of Technology, 2014: 23-54 (in Chinese). | |
37 | BALAKRISHNA S, BUTLER D, ACHESON M, et al. Design and performance of an active sting damper for the NASA common research model[C]∥Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
38 | 陈陆军, 车兵辉, 黄勇, 等. 低速风洞试验模型振动主动控制技术[J]. 南京航空航天大学学报, 2021, 53(4): 591-597. |
CHEN L J, CHE B H, HUANG Y, et al. Active vibration control method for test model in low speed wind tunnel[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(4): 591-597 (in Chinese). | |
39 | 余立, 杨兴华, 寇西平, 等. 跨声速风洞模型主动减振系统试验研究[J]. 南京航空航天大学学报, 2019, 51(4): 526-533. |
YU L, YANG X H, KOU X P, et al. Experiment on active vibration reduction system for transonic wind tunnel model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(4): 526-533 (in Chinese). | |
40 | 曾开春, 欧阳炎, 寇西平, 等. 风洞模型主动减振结构作动器效率定量表征与提升研究[J]. 振动与冲击, 2022, 41(18): 166-175, 191. |
ZENG K C, OUYANG Y, KOU X P, et al. Quantification and improvement of the actuator effectiveness of an active damper for wind tunnel tests[J]. Journal of Vibration and Shock, 2022, 41(18): 166-175, 191 (in Chinese). | |
41 | 曾开春, 寇西平, 杨兴华, 等. 跨声速风洞试验模型主动减振结构优化设计[J]. 航空学报, 2022, 43(2): 224944. |
ZENG K C, KOU X P, YANG X H, et al. Optimization of active vibration damping structure for transonic wind tunnel test model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 224944 (in Chinese). | |
42 | 梁力, 杨智春, 欧阳炎, 等. 垂尾抖振主动控制的压电作动器布局优化[J]. 航空学报, 2016, 37(10): 3035-3043. |
LIANG L, YANG Z C, OUYANG Y, et al. Optimization of piezoelectric actuator configuration on a vertical tail for buffeting control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3035-3043 (in Chinese). | |
43 | BRUANT I, GALLIMARD L, NIKOUKAR S. Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm[J]. Journal of Sound and Vibration, 2010, 329(10): 1615-1635. |
44 | HU K M, LI H. Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells[J]. Journal of Sound and Vibration, 2018, 426: 166-185. |
45 | LIU W, ZHOU M D, WEN Z Q, et al. An active damping vibration control system for wind tunnel models[J]. Chinese Journal of Aeronautics, 2019, 32(9): 2109-2120. |
46 | 麻越垠, 陈万华, 王元兴, 等. 风洞模型支撑系统振动主动控制试验研究[J]. 机械强度, 2015, 37(2): 232-236. |
MA Y Y, CHEN W H, WANG Y X, et al. Active vibration control experimental investigation on wind tunnel model support system[J]. Journal of Mechanical Strength, 2015, 37(2): 232-236 (in Chinese). | |
47 | 刘巍, 毕晓丹, 贾振元, 等. 风洞模型主动抑制器的设计与实验[J]. 光学精密工程, 2014, 23(10): 2895-2901. |
LIU W, BI X D, JIA Z Y, et al. Design and experiment on active damper of wind tunnel model[J]. Optics and precision engineering, 2015, 23(10): 2895-2901 (in Chinese). | |
48 | DAI Y K, SHEN X, ZHANG L, et al. System identification and experiment evaluation of a piezoelectric-based sting damper in a transonic wind tunnel[J]. Review of Scientific Instruments, 2019, 90(7): 075102. |
49 | 姚壮. 基于神经网络模型的风洞模型抑振研究[D]. 大连: 大连理工大学, 2020: 18-61. |
YAO Z. Study on vibration suppression of wind tunnel model based on neural network model[D]. Dalian: Dalian University of Technology, 2020: 18-61 (in Chinese). | |
50 | 张家昆. 基于时滞与模糊滑模的风洞模型振动控制研究[D]. 大连: 大连理工大学, 2018: 47-66. |
ZHANG J K. Research on vibration control of wind tunnel model based on time delay and fuzzy sliding mode[D].Dalian: Dalian University of Technology, 2018: 47-66 (in Chinese). | |
51 | 陈万华, 王元兴, 沈星, 等. 压电叠堆主动减振的神经网络PID实时控制[J]. 南京航空航天大学学报, 2014, 46(4): 587-593. |
CHEN W H, WANG Y X, SHEN X, et al. Neural network PID real-time control for active vibration reduction using piezoceramics stacks[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(4): 587-593 (in Chinese). | |
52 | DAI Y K, ZHANG L, ZHAO Z P, et al. Wind-tunnel evaluation for an active sting damper using multimodal neural networks[J]. AIAA Journal, 2020, 58(5): 1939-1948. |
53 | LIU W, LIU W X, ZHOU M D, et al. An active vibration control method based on energy-fuzzy for cantilever structures excited by aerodynamic loads[J]. Chinese Journal of Aeronautics, 2021, 34(9): 224-235. |
54 | HASSANI V, TJAHJOWIDODO T, DO T N. A survey on hysteresis modeling, identification and control[J]. Mechanical Systems and Signal Processing, 2014, 49(1-2): 209-233. |
55 | 李伟光. 风洞模型尾撑结构振动压电主动控制研究[D]. 西安: 西北工业大学, 2023: 41-64. |
LI W G. Research on piezoelectric active vibration control of wind tunnel model tail support structure[D]. Xi’an: Northwestern Polytechnical University, 2023: 41-64 (in Chinese). | |
56 | 胡寿松, 王执铨, 胡维礼. 最优控制理论与系统[M]. 2版. 北京: 科学出版社, 2005: 2-7. |
HU S S, WANG Z Q, HU W L. Optimal control theory and system[M]. 2nd ed. Beijing: Science Press, 2005: 2-7 (in Chinese). | |
57 | 张家昆, 贾振元, 刘昱, 等. 基于时滞LQR算法的风洞模型振动控制试验研究[J]. 新技术新工艺, 2018(9): 32-37. |
ZHANG J K, JIA Z Y, LIU Y, et al. Research on experiment of vibration control of wind tunnel model based on time-delay LQR algorithm[J]. New Technology & New Process, 2018(9): 32-37 (in Chinese). | |
58 | 孙华亮. 风洞测力模型的神经网络辨识及振动主动控制研究[D]. 南京: 南京航空航天大学, 2013: 11-53. |
SUN H L. Research on neural network identification and active vibration control of wind tunnel force model[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 11-53 (in Chinese). | |
59 | 薛定宇. 控制系统计算机辅助设计: MATLAB语言与应用[M]. 3版. 北京: 清华大学出版社, 2012: 276-353. |
XUE D Y. Computer aided control systems design using MATLAB language[M]. 3rd ed. Beijing: Tsinghua University Press, 2012: 276-353 (in Chinese). | |
60 | BALAKRISHNA S, BUTLER D, WHITE E, et al. Active damping of sting vibrations in transonic wind tunnel testing[C]∥Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
61 | 佘重禧, 陈卫东, 邵敏强. 跨声速风洞测力模型的降阶及H∞减振控制[J]. 噪声与振动控制, 2014, 34(1): 67-71, 81. |
SHE C X, CHEN W D, SHAO M Q. Model reduction and active vibration suppression of a wind tunnel test model by H∞ control[J]. Noise and Vibration Control, 2014, 34(1): 67-71, 81 (in Chinese). | |
62 | 韦亚南. 时滞加速度反馈下风洞测力试验模型的振动主动控制[D]. 南京: 南京航空航天大学, 2015: 30-57. |
WEI Y N. Active vibration control of wind tunnel dynamometer test model under time-delay acceleration feedback[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 30-57 (in Chinese). | |
63 | 佘重禧. 跨声速风洞测力试验模型的振动主动控制研究[D]. 南京: 南京航空航天大学, 2013: 45-58. |
SHE C X. Study on active vibration control of transonic wind tunnel force test model[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 45-58 (in Chinese) . | |
64 | 姜雨丰, 温正权, 姚壮, 等. 基于视觉的风洞支杆主动抑振方法[J]. 新技术新工艺, 2019(6): 67-70. |
JIANG Y F, WEN Z Q, YAO Z, et al. Method of the supporting sting in wind tunnel based on vision active vibration suppression[J]. New Technology & New Process, 2019(6): 67-70 (in Chinese). | |
65 | 汪建晓, 孟光. 磁流变液研究进展[J]. 航空学报, 2002, 23(1): 6-12. |
WANG J X, MENG G. Research advances in magnetorheological fluids[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(1): 6-12 (in Chinese). | |
66 | 卢坤, 刘翎, 杨志荣, 等. 基于磁流变弹性体的推进轴系半主动式吸振器研究[J]. 振动与冲击, 2017, 36(15): 36-42. |
LU K, LIU L, YANG Z R, et al. Semi-active dynamic absorber of a ship propulsion shafting based on MREs[J]. Journal of Vibration and Shock, 2017, 36(15): 36-42 (in Chinese). | |
67 | 汪路路. 1.2米风洞磁流变减振系统研制报告[R]. 绵阳: 中国空气动力研究与发展中心, 2023. |
WANG L L. Vibration damping system based on magnetorheological fluids in 1.2 meter scale wind tunnel[R]. Mianyang: China Aerodynamics Research and Development Center, 2023 (in Chinese). | |
68 | 杨铁军, 石慧, 李新辉, 等. 一种基于智能减振器的船舶机械设备主动减振系统研制[J]. 振动工程学报, 2017, 30(2): 167-176. |
YANG T J, SHI H, LI X H, et al. One active isolation system for marine machine based on smart isolators[J]. Journal of Vibration Engineering, 2017, 30(2): 167-176 (in Chinese). | |
69 | 廖达雄, 黄知龙, 陈振华, 等. 大型低温高雷诺数风洞及其关键技术综述[J]. 实验流体力学, 2014, 28(2): 1-6, 20. |
LIAO D X, HUANG Z L, CHEN Z H, et al. Summary of large-scale low temperature and high Reynolds number wind tunnel and its key technologies[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 1-6, 20 (in Chinese). | |
70 | 王长军. 低温工程用 18Ni200D 锻件技术条件[R]. 北京: 钢铁研究总院有限公司, 2022. |
WANG C J. Technical specifications of 18Ni200D steel forgings in cryogenic engineering[R]. Beijing: Central Iron and Steel Research Institute, 2002 (in Chinese). | |
71 | PHILIP S A, DANA J J, MICHAEL B, et al. Wind tunnel and propulsion test facilities supporting analyses to an assessment of NASA’s capabilities to serve national needs[R]. Arlington: RAND National Defense Research Institute, 2004. |
72 | ACHESON M, BALAKRISHNA S. Effects of active sting damping on common research model data quality[C]∥49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
73 | 杨兴华. 某低温风洞模型减振系统结构设计与保温方案验证报告[R]. 绵阳: 中国空气动力研究与发展中心, 2021. |
YANG X H. Verification report on structure design and insulation scheme of cryogenic wind tunnel model vibration reduction system[R]. Mianyang: China Aerodynamics Research and Development Center, 2021 (in Chinese). |
[1] | Pengpeng SUN, Ping’an LIU, Feng FAN, Wei ZENG. Aerodynamic interaction characteristics of coaxial rigid rotor⁃fuselage in hover condition [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529284-529284. |
[2] | Chang WANG, Long HE, Dongxia XU, Min TANG, Shuai MA, Ximing WU. Flow control drag reduction of hub on coaxial rigid rotor aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529084-529084. |
[3] | Weiguo ZHANG, Min TANG, Jie WU, Xianmin PENG, Guichuan ZHANG, Bowen NIE, Liangquan WANG, Chaoqun LI. Overview of wind tunnel test research on tiltrotor aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 530114-530114. |
[4] | Bowen NIE, Liangquan WANG, Zhiyin HUANG, Long HE, Shipeng YANG, Hongtao YAN, Guichuan ZHANG. Flight dynamics modeling and control scheme design of compound high-speed unmanned helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529848-529848. |
[5] | Qichang CHEN, Zhiwei SHI, Weiyuan ZHANG, Linglong YAO, Shengxiang TONG. Aerodynamic layout and control strategy design and flight verification of a wing⁃foldable variant VTOL aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629583-629583. |
[6] | Liu LIU, Xianhong XIANG, Yufei ZHANG, Haixin CHEN, Chuang WEI, Jian ZHU, Pu YANG. A high lift-to-drag ratio unconventional blended-wing-body aerodynamic configuration with swallow tail [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629630-629630. |
[7] | Xuqi ZHANG, Yu LIU. Experimental study of aerodynamic noise of flow around polygonal cylinders [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(23): 630292-630292. |
[8] | Yubao SONG, Rongping ZHANG, Yifeng SUN, Junlong ZHANG, Zhenglei FAN. Mach number similarity law of high-lift device noise based on large-scale wind tunnel test [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(23): 630389-630389. |
[9] | Haixing LI, Feng ZHOU, Wei YAN, Feng BAI, Keliang ZHAO. Effects of roughness ice on aerodynamic performance of civil aircraft horizontal tail [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128657-128657. |
[10] | Yu LIU, Mengjie QIN, Qiang WANG, Xian YI. Scaling law for salty sea spray icing wind tunnel test [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729297-729297. |
[11] | Qiuming YANG, Yongfeng ZHU, Huawei CHEN, Xiaolin LIU. Anti-icing performance test investigation on hollowed patterning electric heating module [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729334-729334. |
[12] | Shiqi GAO, Bo DING, Xuzhen XIE, Zheng LI, Lin CHEN, Shouyuan QIAN, Zihan JIAO, Guanghui BAI. Drag reduction mechanism using plasma synthetic jet in high⁃speed flow [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729373-729373. |
[13] | Lingsong XU, Yuan WU, Dongyu ZHU, Fukun ZHANG, Yu LIU. A wing pitch oscillation mechanism for FL⁃61 icing wind tunnel [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729296-729296. |
[14] | Yi JIN, Shu SUN, Yunjie GUO, Huijun TAN, Yue ZHANG. Dual solution internal flow phenomenon and throttling characteristics of a supersonic variable inlet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 127134-127134. |
[15] | Junhong LI, Xuhong JIN, Chunfeng LIU, Wenbo MIAO, Xiaoli CHENG. Microaerodynamic experiment and computation of near space high speed vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127072-127072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341