Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (23): 30405.doi: 10.7527/S1000-6893.2024.30405
• Reviews • Previous Articles
Ting WANG1,2(), Haoxuan ZHOU3, Xiaobin ZHANG1,2, Weilin LI1,2, Wenping CAO4
Received:
2024-03-18
Revised:
2024-04-15
Accepted:
2024-07-08
Online:
2024-07-24
Published:
2024-07-23
Contact:
Ting WANG
E-mail:wangt@mail.nwpu.edu.cn
Supported by:
CLC Number:
Ting WANG, Haoxuan ZHOU, Xiaobin ZHANG, Weilin LI, Wenping CAO. A review of fault analysis and diagnosis methods for rotating rectifier in aircraft starter/generator[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(23): 30405.
Table 1
Classification of rotating rectifier fault modes
故障模式 | 故障描述 | 典型故障二极管 | 其他故障二极管 | |
---|---|---|---|---|
开路 | I | 单个二极管开路 | D1 | D2/ D3/ D4/ D5/ D6 |
II | 同相2个二极管开路 | D1D4 | D3D6/ D2D5 | |
III | 不同相同上/同下桥臂2个二极管开路 | D1D3 | D1D5/ D3D5/ D2D4/D2D6/ D4D6 | |
IV | 不同相一上/一下桥臂2个二极管开路 | D1D2 | D2D3/ D3D4/ D4D5/D5D6/ D1D6 | |
短路 | V | 单个二极管短路 | D1 | D2/ D3/ D4/ D5/ D6 |
VI | 同相2个二极管开路 | D1D4 | D3D6/ D2D5 | |
VII | 不同相同上/同下桥臂2个二极管短路 | D1D3 | D1D5/ D3D5/ D2D4/D2D6/ D4D6 | |
VIII | 不同相一上/一下桥臂2个二极管短路 | D1D2 | D2D3/ D3D4/ D4D5/D5D6/ D1D6 |
Table 2
Fault diagnosis methods based on ME rotor armature current analysis
文献 | 故障类型 | 故障特征 | 区分故障 | 故障定位 | 阈值确定 |
---|---|---|---|---|---|
[ | 开路/短路 | 开路:ME转子电枢非故障相电流三次谐波分量↑ ME转子电枢故障相基波分量↓ 短路:ME转子电枢三相电流基波和三次谐波分量均↑ | 基波分量↓,开路 基波分量↑,短路 | ||
[ | 开路/短路 | ME转子电枢电流二次谐波分量/基波分量幅值比 | 若无二次谐波分量,健康;若某相幅值比增量最大,其余两相较小且相同,则该相开路;若某相幅值比增量最小,其余两相较大且相同,则该相短路 | ||
[ | 开路 | ① ME转子电枢电流各次谐波分量 ② 计算不同位置单个二极管开路时ME转子电枢电流二次谐波分量~四次谐波分量对基波的比值组成向量 ③ 对未知开路故障,计算 | 将 | 计算一个波形周期内故障相电流的最大值和最小值之和 | |
[ | 开路/短路 | ① 定义各相ME转子电枢电流总畸波含量 ② 任意两相ME转子电枢电流THD的残差 | 若任意 若某一残差 若某一残差 | Kth=0 Kth1=0.1 由理论分析和实验误差估计 | |
[ | 开路 | ①计算一个采样周期内任一采样点k时刻各相ME转子电枢电流瞬时值,得到定义类狄利克雷函数 ②一个采样周期内,对Nx累加得到 ③比较一个采样周期内任意两相Px之差 | 若差值均小于 若某一差值大于 | Kth1=0.5 Kth2=0.15 由理论分析和实验误差估计 | |
[ | 开路/短路 | ①对多相励磁结构的ME,旋转磁场的产生可以等效为 其中 ③计算轨迹的长宽比 | 轨迹的长宽比与两个阈值比较:≤0.1,健康; | 根据转子位置确定故障二极管位置: 150°~210°,D1故障; 210°~270°,D2故障; 270°~330°,D3故障; 330°~30°,D4故障; 30°~00°,D5故障; 90°~150°,D6故障 | |
[ | 开路 | ①计算一个采样周期内任意时刻两相ME转子电枢电流之间的曼哈顿距离函数 ②计算各相平均值 | 若所有相 若任一两相 若任一两相 | 考虑故障诊断所需时间和抗干扰性,阈值Tth=0.2 |
Table 3
Fault decision method of diode open/short circuit based on measurable variables on stator side
故障信号 | 方法 分析 | 故障类型 | 诊断方法描述 | 文献 | |
---|---|---|---|---|---|
故障特征 | 区分故障 | ||||
ME 励磁电流 | FT | 开路 | 基波和二次谐波分量↑ | [ | |
开路/短路 | 基波和二次谐波分量↑ | 开路:二次谐波分量幅值最大 短路:基波分量幅值最大 | [ | ||
开路 | 励磁电流直流分量↑ | [ | |||
开路/短路 | 1、2、3次谐波分量↑ | 开路:1、2、3次谐波分量幅值 短路:基波分量幅值最大 | [ | ||
开路/短路 | 1、2、3、4、5次谐波分量↑ | 开路:基波分量幅值最大,且2、3、4次谐波分量幅值与基波的比值分别为 0.77、0.39、0.03 短路:主要包含直流分量和一次谐波分量 | [ | ||
短路 | 励磁电流中偶数次谐波分量↑ | [ | |||
开路/短路 | MG电枢绕组注入高频信号后,计算得到ME励磁电流的幅值Iesh_fh作为故障特征 | Iesh_fh<Ith,健康 Iesh_fh>Ith,故障 | [ | ||
时域 | 开路/短路 | ① 对三相励磁结构,求励磁电流的平方和I2esm ② 定义相邻两个换相点励磁电流平方和的比值 | 比值<1.3,健康 1.3≤比值<3,开路 比值>3,短路 | [ | |
EMD | 开路 | ME励磁电流分解为15个本征模态分量,分别计算其能量值构成特征向量 最小二乘支持向量机(LS-SVM)模型训练时间小于NN | [ | ||
开路 | 在文献[ 得到4个本征模态分量,分别计算其能量熵构成特征向量 与ELM相比,SVM模型训练和测试时间更长 | [ | |||
WA | 开路 | 3层小波包分解得到7个频带分量,计算各频带分量的能量 故障后第1频带能量↑ | [ | ||
MG 输出电压 | FT | 短路 | MG 输出电压中三次谐波分量↑ | [ | |
开路/短路 | ① 对故障发生前后的T时间内MG输出三相电压分别进行n点采样,每间隔L重新采样,对每个样本进行FFT分析,分别得到主频对应的峰值 ② 计算特征量 | [ | |||
开路/短路 | FFT分析得到MG输出电压的直流分量和各次谐波分量; 分别单独作为故障特征进行分类效果评估,得到最优故障特征排序; 选取最佳故障特征频率,分别与其他频率组成特征向量,得到其分类效果排序 | [ | |||
WA | 开路 | 对MG输出三相电压进行3层小波包分解,获取各频带能量值判断二极管是否故障 | [ | ||
开路 | 分别计算MG输出电压的有效值RMS、方差、脉冲因子和小波包分解得到各频带的能量组成故障特征向量 | [ |
Table 4
Comparison of fault diagnosis methods for rotating rectifiers
故障诊断方法 | 诊断精度 | 数据需求 | 优点 | 缺点 | 适用性 | |
---|---|---|---|---|---|---|
基于外加检测设备 | 霍尔传感器[ | 低 | 少 | 低成本,简单直观, 能够区分故障类型,具有故障定位功能 | 侵入式,安装位置很重要,拆装不便,易误诊,霍尔传感器稳定性较差,易受油污或灰尘污染造成信号失真 | 适用于测试阶段 |
并联电容[ | 低 | 少 | 低成本,简单直观,便于现场数据采集 | 侵入式,易受到励磁机磁饱和的影响造成故障信号失真,不能区分故障类型 | 适用于测试阶段,对快速诊断要求不高的场合 | |
检测线圈:定子磁极[ | 一般 | 较多 | 诊断快,可解释性强,可获取瞬时磁通,区分故障类型 | 侵入式,安装较为困难,对理论分析要求高,容易受扰动影响造成误诊 | 适用于定性验证故障,适用于知识规则完备的系统的诊断,适用于便于组装的中小型无刷励磁发电机组等 | |
多相励磁闲置绕组[ | 高 | 一般 | 诊断快速,区分故障类型,实现故障定位 | 简单明晰,无需安装额外设备,实用性强 | 只能用于多相励磁结构的同步发电机 | |
基于ME估计转子电枢电流 | 瞬时时域信息[ FFT分析[ 几何轨迹[ | 取决于ME转子电枢电流估算精度 | 一般 | 非侵入式,区分故障类型,实现定位故障 | 诊断精度依赖于ME转子电流估计精度,需要精确的ME模型和转子位置信息 | 只能用于多相励磁的同步发电机结构 |
基于ME定子侧励磁电流 | 时域分析[ | 高 | 较多 | 非侵入式,诊断快速,实施较容易,实用性强 | 信号处理较为复杂,不能区分及定位故障,诊断性能易受工作状态、电机结构影响,通用性较差 | 适用于可测信号特征复杂的情况 |
FFT分析[ | ||||||
时频域分析(EMD[ | ||||||
高频注入法[ | 非侵入式,诊断快速 | 不能在线诊断 | 适用于离线测试或验证故障阶段 | |||
机器学习[ | 高 | 较多 | 诊断快速,负载鲁棒性强,通用性较强 | 要求数据量大且质量高,模型训练参数选取需要多方面考虑 | 适用于小样本、非线性及高维特征的故障模式 | |
深度学习[ | 适用于大规模数据集和复杂系统的诊断 | |||||
基于MG定子侧输出端电压 | FFT分析[ 时频域分析[ BPNN[ SVM[ | 高 | 较多 | 非侵入式,诊断精度高,容易实现,对系统理论要求不高 | 故障信息较少,需要深度数据挖掘,很难区分及定位故障,诊断性能受系统工作状态的影响较大,对信号处理、智能算法依赖性强 | 适用于大型、理论解析性差的系统故障诊断 |
1 | SARLIOGLU B, MORRIS C T. More electric aircraft: review, challenges, and opportunities for commercial transport aircraft[J]. IEEE Transactions on Transportation Electrification, 2015, 1(1): 54-64. |
2 | 郑先成, 张晓斌, 黄铁山. 国外飞机电气技术的现状及对我国多电飞机技术发展的考虑[J]. 航空计算技术, 2007, 37(5): 120-122, 126. |
ZHENG X C, ZHANG X B, HUANG T S. States of foreign aircraft electric technologies and consideration on our aircraft electric technologic developments[J]. Aeronautical Computing Technique, 2007, 37(5): 120-122, 126 (in Chinese). | |
3 | BARZKAR A, GHASSEMI M. Electric power systems in more and all electric aircraft: a review[C]∥ IEEE Access. Piscataway: IEEE Press, 2020: 169314-169332. |
4 | CAO W P, MECROW B C, ATKINSON G J, et al. Overview of electric motor technologies used for more electric aircraft (MEA)[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3523-3531. |
5 | 张卓然, 于立, 李进才,等. 飞机电气化背景下的先进航空电机系统[J]. 南京航空航天大学学报, 2017, 49(5): 622-634. |
ZHANG Z R, YU L, LI J C, et al. Key technologies of advanced aircraft electrical machine systems for aviation electrification[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5): 622-634 (in Chinese). | |
6 | 新华网. 原因未明!美军无人机坠毁事故激增[EB/OL]. (2016-01-22) [2024-05-06]. . |
Xinhuanet. Unknown reason! The number of U.S. military UAV crashes had increased sharply[EB/OL]. (2016-01-22) [2024-05-06]. (in Chinese). | |
7 | 视频中国. 美国波音787交付8天内故障致紧急迫降[EB/OL]. (2012-12-07) [2024-05-06]. . |
V | China. U.S. Boeing 787 forced to make emergency landing 8 days after delivery[EB/OL]. (2012-12-07) [2024-05-06]. (in Chinese). |
8 | 新华社. 港澳台:马航吉隆坡飞首尔客机紧急降落香港机场[EB/OL]. (2014-03-24) [2024-05-06]. . |
The Xinhua News Agency. Hong Kong, Macao and Taiwan regions of China: Malaysia Airlines flight from Kuala Lumpur to Seoul made emergency landing at Hong Kong airport[EB/OL]. (2014-03-24) [2024-05-06]. (in Chinese). | |
9 | 环球网. 中国台湾中华航空一架航班因发动机故障临时迫降日本福冈[EB/OL]. (2017-08-15) [2024-05-06]. . |
Huanqiu. A China Airlines flight from Taiwan of China made an emergency landing in Fukuoka, Japan due to engine failure[EB/OL]. (2017-08-15) [2024-05-06]. (in Chinese). | |
10 | 大纪元新闻网. 发电机故障中国台F-16 战机迫降清泉岗[EB/OL]. (2016-12-19) [2024-05-06]. . |
Epochtimes. Taiwan of China F-16 fighter jet made an emergency landing at Ching Chuan Kang due to generator failure[EB/OL]. (2016-12-19) [2024-05-06]. (in Chinese). | |
11 | WANG Y L, NUZZO S, ZHANG H, et al. Challenges and opportunities for wound field synchronous generators in future more electric aircraft[J]. IEEE Transactions on Transportation Electrification, 2020, 6(4): 1466-1477. |
12 | NØLAND J K, NUZZO S, TESSAROLO A, et al. Excitation system technologies for wound-field synchronous machines: survey of solutions and evolving trends[J]. IEEE Access, 2019, 7: 109699-109718. |
13 | JIAO N F, LI Z J, MAO S, et al. Aircraft brushless wound-rotor synchronous starter-generator: a technology review[J]. IEEE Transactions on Power Electronics, 2023, 38(6): 7558-7574. |
14 | 朱德明, 李进才, 韩建斌, 等. 起动发电机在中国大型客机上的应用[J]. 航空学报, 2019, 40(1): 522479. |
ZHU D M, LI J C, HAN J B, et al. Application prospect of starter/generator on large civil aircraft in China[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522479 (in Chinese). | |
15 | BATZEL T D, SWANSON D C, DEFENBAUGH J F. Predictive diagnostics for the main field winding and rotating rectifier assembly in the brushless synchronous generator[C]∥ 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003 SDEMPED. Piscataway: IEEE Press, 2003: 349-354. |
16 | BATZEL T D, SWANSON D C. Prognostic health management of aircraft power generators[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 473-482. |
17 | KELLER K, SWEARINGEN K, SHEAHAN J, et al. Aircraft electrical power systems prognostics and health management[C]∥ 2006 IEEE Aerospace Conference. Piscataway: IEEE Press, 2006:1-12. |
18 | MOSTAFAEI M, FAIZ J. An overview of various faults detection methods in synchronous generators[J]. IET Electric Power Applications, 2021, 15(4): 391-404. |
19 | XIAO Q, JIN Y, JIA H J, et al. Review of fault diagnosis and fault-tolerant control methods of the modular multilevel converter under submodule failure[J]. IEEE Transactions on Power Electronics, 2023, 38(10): 12059-12077. |
20 | 严如强, 许文纲, 王志颖 等. 航空发动机燃油控制系统故障诊断技术研究进展与挑战[J]. 机械工程学报, 2024, 60(4): 3-31. |
YAN R Q, XU W G, WANG Z Y, et al. Research status and challenges on fault diagnosis methodology for fuel control system of aero-engine[J]. Journal of Mechanical Engineering, 2024, 60(4): 3-31 (in Chinese). | |
21 | YIN Z Y, HU N Q, CHEN J G, et al. A review of fault diagnosis, prognosis and health management for aircraft electromechanical actuators[J]. IET Electric Power Applications, 2022, 16(11): 1249-1272. |
22 | ZHANG S N, KANG R, GANG N, et al. Status of research and development on prognostics and health management in China[C]∥ 2010 Prognostics and System Health Management Conference. Piscataway: IEEE Press, 2010: 1-5. |
23 | LI X Y. A microprocessor-based fault monitor for rotating rectifiers of brushless ac exciters using a pattern-recognition approach[J]. Electric Machines and Power Systems, 1996, 24(2): 189-198. |
24 | ZOUAGHI T, POLOUJADOFF M. Modeling of polyphase brushless exciter behavior for failing diode operation[J]. IEEE Transactions on Energy Conversion, 1998, 13(3): 214-220. |
25 | TANTAWY A, KOUTSOUKOS X, BISWAS G. Aircraft power generators: hybrid modeling and simulation for fault detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 552-571. |
26 | BUI H K, BRACIKOWSKI N, HECQUET M, et al. Simulation of a large power brushless synchronous generator (BLSG) with a rotating rectifier by a reluctance network for fault analysis and diagnosis[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 4327-4337. |
27 | RAHNAMA M, VAHEDI A. Rotary diode failure detection in brushless exciter system of power plant synchronous generator[C]∥ 2016 6th Conference on Thermal Power Plants (CTPP). Piscataway: IEEE Press, 2016: 6-11. |
28 | BOJAR A, VAHEDI A, RAHNAMA M. Rotating rectifier fault detection using exciter modelling in a brushless synchronous generator[C]∥ AIP Conference Proceedings. AIP Publishing, 2023. |
29 | 马远航, 张晓斌, 高朝晖. 飞机同步发电机的建模仿真方法研究[J]. 微电机, 2014, 47(10): 58-61, 88. |
MA Y H, ZHANG X B, GAO Z H. Modeling and simulation of aircraft synchronous generator[J]. Micromotors, 2014, 47(10): 58-61, 88 (in Chinese). | |
30 | 李冰洁, 张晓斌, 吴小华, 等. 基于Dymola及Modelica语言的飞机三级发电机的建模与仿真[J]. 微电机, 2016, 49(3): 40-44. |
LI B J, ZHANG X B, WU X H, et al. Modeling and simulation of aircrafts three-stage synchronous generator based on dymola and modelica language[J]. Micromotors, 2016, 49(3): 40-44 (in Chinese). | |
31 | 梁波, 李玉忍, 薛梦娇. 飞机三级式发电系统建模与仿真[J]. 计算机仿真, 2013, 30(2): 71-75. |
LIANG B, LI Y R, XUE M J. Modeling and simulation of three-stage aircraft synchronous generator system[J]. Computer Simulation, 2013, 30(2): 71-75 (in Chinese). | |
32 | SHI X D, LI P J, ZHU J J, et al. Modeling and feather extraction of rotating rectifier faults of aircraft integrated drive generator[J]. Journal of Applied Sciences, 2013, 13(16): 3128-3136. |
33 | 李鹏举. 飞机主发电机建模与旋转整流器故障仿真方法研究[D]. 天津: 中国民航大学, 2014. |
LI P J. Research of modeling of aircraft generator and fault simulation methods of rotating rectifier[D].Tianjin: Civil Aviation University of China, 2014 (in Chinese). | |
34 | HUANG C, YUAN H W, MA Z, et al. The fault diagnosis of aircraft power system based on inverse problem of fuzzy optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(6): 1059-1074. |
35 | ZHANG S K, WANG F C, SUN D J, et al. Fault analysis and feature extraction of rotary rectifier of aviation three-stage generator[C]∥ International Conference on Clean Energy and Electrical Systems. Singapore: Springer, 2023: 79-94. |
36 | 刘念, 谢驰. 无刷励磁同步发电机旋转整流器故障的模糊神经网络诊断[J]. 继电器, 2003, 31(8): 8-11. |
LIU N, XIE C. Diagnosis of fuzzy neural network for rotating rectifier Faults of generators with Brushless excitation[J]. Relay, 2003, 31(8): 8-11 (in Chinese). | |
37 | 刘念, 谢驰. 无刷同步发电机旋转整流器故障监测新方法研究[J]. 电工技术杂志, 2000, 19(8): 16. |
LIU N, XIE C. Study of a new method for monitoring rotating rectifier faults of generators with brushless excitation [J]. Electrotechnical Application, 2000, (8): 16-18 (in Chinese). | |
38 | 武玉才, 孙淑琼. 多相无刷励磁机旋转二极管开路故障在线检测方法[J]. 中国电力, 2023, 56(8): 99-108. |
WU Y C, SUN S Q. Online detection method of open circuit fault of rotating diode in multi-phase brushless exciter[J]. Electric Power, 2023, 56(8): 99-108 (in Chinese). | |
39 | 武玉才, 庞永林, 侯旭辰. 中小型无刷励磁同步发电机组旋转整流桥二极管开路故障的在线检测方法[J]. 电机与控制学报, 2021, 25(5): 42-51. |
WU Y C, PANG Y L, HOU X C. On-line detection method for rotating rectifier bridge diode open-circuit fault of small and medium-sized brushless excitation synchronous generator set[J]. Electric Machines and Control, 2021, 25(5): 42-51 (in Chinese). | |
40 | SUN C H, LIU W G, JIA Q, et al. On-line fault diagnosis for rotating rectifier in wound-rotor synchronous starter/generator using idle field winding[C]∥ 2020 23rd International Conference on Electrical Machines and Systems (ICEMS). Piscataway: IEEE Press, 2020: 1336-1340. |
41 | MCARDLE M G, MORROW D J. Noninvasive detection of brushless exciter rotating diode failure[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 378-383. |
42 | SALAH M, BACHA K, CHAARI A. Detection of brushless exciter rotating diodes failures by spectral analysis of main output voltage[C]∥ 2013 International Conference on Electrical Engineering and Software Applications. Piscataway: IEEE Press, 2013: 1-6. |
43 | SALAH M, BACHA K, CHAARI A, et al. Brushless three-phase synchronous generator under rotating diode failure conditions[J]. IEEE Transactions on Energy Conversion, 2014, 29(3): 594-601. |
44 | 张超, 夏立. 基于谐波分析的旋转整流器故障检测[J]. 电机与控制应用, 2008, 35(11): 51-54. |
ZHANG C, XIA L. Fault detection of rotary rectifier based on harmonic analysis[J]. Electric Machines & Control Application, 2008, 35(11): 51-54 (in Chinese). | |
45 | 张超, 夏立. 发电机旋转整流器故障的分形和动态测度诊断[J]. 电机与控制学报, 2009, 13(1): 6-10. |
ZHANG C, XIA L. Fault diagnosis of generator rotating rectifier based on fractal and Dynamics[J]. Electric Machines and Control, 2009, 13(1): 6-10 (in Chinese). | |
46 | 刘勇智, 刘聪. 基于EMD 和LS-SVM 的旋转整流器故障诊断方法研究[J]. 微电机, 2012, 45(4): 21-24. |
LIU Y Z, LIU C. Fault diagnosis of rotating rectifier based on EMD and LS-SVM[J]. Micromotors, 2012, 45(4): 21-24 (in Chinese). | |
47 | 张敬, 李颖晖, 朱喜华 等. 三级式发电机旋转整流器故障特征提取[J]. 微电机, 2011, 44(7): 92-96. |
ZHANG J, LI Y H, ZHU X H, et al. Fault feature excitation for rotating rectifier of three-stage generator[J]. Micromotors, 2011, 44(7): 92-96 (in Chinese). | |
48 | ZHANG Z, LIU W G, PENG J C, et al. Identification of TBAES rotating diode failure[J]. IET Electric Power Applications, 2017, 11(2): 260-271. |
49 | PANG J, LIU W G, WEI Z H, et al. Online diode fault detection in rotating rectifier of the brushless synchronous starter generator[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11): 6943-6951. |
50 | WEI Z H, LIU W G, ZHANG Z, et al. Rotating rectifier fault detection method of wound-rotor synchronous starter-generator with three-phase exciter[J]. The Journal of Engineering, 2018, 2018 (13): 524-528. |
51 | 刘念, 谢驰, 王涛, 等. 基于免疫算法的无刷励磁发电机旋转整流器故障诊断[J]. 电力自动化设备, 2007, 27(5): 32-35. |
LIU N, XIE C, WANG T, et al. Immune algorithm in rotating rectifier fault diagnosis of brushless generator[J]. Electric Power Automation Equipment, 2007, 27(5): 32-35 (in Chinese). | |
52 | THIRUKOVALLURU R, DIXIT S, SEVAKULA R K, et al. Generating feature sets for fault diagnosis using denoising stacked auto-encoder[C]∥ 2016 IEEE International Conference on Prognostics and Health Management (ICPHM). Piscataway: IEEE Press, 2016: 1-7. |
53 | GRAY D, ZHANG Z A, APOSTOAIA C, et al. A neural network based approach for the detection of faults in the brushless excitation of a synchronous motor[C]∥ 2009 IEEE International Conference on Electro/Information Technology. Piscataway: IEEE Press, 2009: 423-428. |
54 | 薄海涛, 白振兴. 基于故障树和神经网络的飞机电源系统故障诊断[J]. 自动化与仪表, 2005, 20(4): 65-67. |
BO H T, BAI Z X. Fault diagnosis of aircraft electric power system based on fault tree and neural network[J]. Automation & Instrumentation, 2005, 20(4): 65-67 (in Chinese). | |
55 | 唐军祥, 崔江. 一种无刷同步发电机旋转整流器故障快速识别方法[J]. 计算机与现代化, 2017(10): 66-71. |
TANG J X, CUI J. A fast fault recognition method of brushless synchronous generator rotating rectifier[J]. Computer and Modernization, 2017(10): 66-71 (in Chinese). | |
56 | 崔江, 唐军祥, 张卓然, 等. 基于极限学习机的航空发电机旋转整流器快速故障分类方法研究[J]. 中国电机工程学报, 2018, 38(8): 2458-2466. |
CUI J, TANG J X, ZHANG Z R, et al. Fast fault classification method research of aircraft generator rotating rectifier based on extreme learning machine[J]. Proceedings of the CSEE, 2018, 38(8): 2458-2466 (in Chinese). | |
57 | 孟飒飒, 孔德明, 崔江, 等. 基于DBN的航空发电机旋转整流器故障诊断方法[J]. 航空计算技术, 2018, 48(4): 105-108, 111. |
MENG S S, KONG D M, CUI J, et al. Fault detection method of aircraft generator rotating rectifier based on DBN[J]. Aeronautical Computing Technique, 2018, 48(4): 105-108, 111 (in Chinese). | |
58 | 崔江, 郭瑞东, 张卓然, 等. 基于改进DBN的发电机旋转整流器故障特征提取技术[J]. 中国电机工程学报, 2020, 40(7): 2369-2376. |
CUI J, GUO R D, ZHANG Z R, et al. Generator rotating rectifier fault feature extraction technique based on improved DBN[J]. Proceedings of the CSEE, 2020, 40(7): 2369-2376 (in Chinese). | |
59 | 崔江, 冯赛, 张卓然,等. 基于 BLS 的无刷发电机旋转整流器特征提取技术研究[J]. 中国电机工程学报, 2020, 40(12): 4004-4013. |
CUI J, FENG Q, ZHANG Z R, et al. Research on feature extraction technology of brushless generator rotating rectifier based on BLS[J]. Proceedings of the CSEE, 2020, 40(12): 4004-4013 (in Chinese). | |
60 | 程延伟, 谢永成, 李光升. 基于支持向量机的旋转整流桥故障诊断[J]. 计算机测量与控制, 2011, 19(3): 516-518. |
CHENG Y W, XIE Y C, LI G S. Fault diagnosis of rotating rectifier bridge based on SVM[J]. Computer Measurement & Control, 2011, 19(3): 516-518 (in Chinese). | |
61 | LORD D H, GLEASON D. Design & evaluation methodology for built-in-test[J]. IEEE Transactions on Reliability, 1981, 30(3): 222-226. |
62 | 王少萍. 大型飞机机载系统预测与健康管理关键技术[J]. 航空学报, 2014, 35(6): 1459-1472. |
WANG S P. Prognostics and health management key technology of aircraft airborne system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1459-1472 (in Chinese). | |
63 | 王海峰. 战斗机故障预测与健康管理技术应用的思考[J]. 航空科学技术, 2020, 31(7): 3-11. |
WANG H F. Research on application of prognostics and health management technology for fighter aircraft[J]. Aeronautical Science & Technology, 2020, 31(7): 3-11 (in Chinese). | |
64 | 艾凤明, 梁兴壮, 董润, 等. 军用飞机供配电系统故障预测与健康管理关键技术[J]. 航空科学技术, 2023, 34(2): 86-95. |
AI F M, LIANG X Z, DONG R, et al. Key technologies of prognostic and health management of military aircraft power supply and distribution system[J]. Aeronautical Science & Technology, 2023, 34(2): 86-95 (in Chinese). | |
65 | 中国民用航空网. 大飞机C919将装备具有自主知识产权的PHM系统[EB/OL]. (2016-12-19) [2024-05-09]. . |
Ccaonline. The big plane C919 will be equipped with a PHM system with independent intellectual property rights[EB/OL]. (2016-12-19) [2024-05-09]. (in Chinese). | |
66 | 李小宁, 高朝晖, 王爽, 等. 飞机主电源系统关键器件健康状态评估研究[J]. 电气工程学报, 2023, 18(4): 188-198. |
LI X N, GAO Z H, WANG S, et al. Research on health assessment method of key components in aircraft main power system[J]. Journal of Electrical Engineering, 2023, 18(4): 188-198 (in Chinese). | |
67 | 汤孝, 高朝晖, 郗展, 等. 航空发电机健康特征参数与老化模式分析[J]. 航空科学技术, 2021, 32(6): 27-35. |
TANG X, GAO Z H, XI Z, et al. Analysis on health characteristic parameters and aging mode of aerospace generator[J]. Aeronautical Science & Technology, 2021, 32(6): 27-35 (in Chinese). | |
68 | 杨林. 无刷励磁机旋转二极管断相试验研究[J]. 电工技术, 2013(1): 1-3. |
YANG L. Experimental study on phase failure of rotating diode of brushless exciter[J]. Electric Engineering, 2013(1): 1-3 (in Chinese). | |
69 | 袁金, 刘国强, 陈晓义, 等. 霍尔元件用于无刷励磁旋转二极管故障在线监测[J]. 电机技术, 2013(1): 22-26, 34. |
YUAN J, LIU G Q, CHEN X Y, et al. Hall elements used in online monitoring to the default of rotating rectifier in the large-size brushless exciter[J]. Electrical Machinery Technology, 2013(1): 22-26, 34 (in Chinese). | |
70 | 王如海. 无刷励磁机旋转二极管故障试验探讨[J]. 四川电力技术, 1999, 22(3): 54-57. |
WANG R H. Test method discussion for rotating diode fault of brushless excitation[J]. Sichuan Electric Power Technology, 1999, 22(3): 54-57 (in Chinese). | |
71 | 郭瑞东, 陈燕, 崔江. 基于FPGA的同步发电机旋转整流器故障监测系统[J]. 微特电机, 2021, 49(3): 47-49, 55. |
GUO R D, CHEN Y, CUI J. Fault monitoring system of synchronous generator rotating rectifier based on FPGA[J]. Small & Special Electrical Machines, 2021, 49(3): 47-49, 55 (in Chinese). | |
72 | 孟飒飒, 师鸽, 崔江. 基于 DSP 的航空发电机旋转整流器诊断技术研究[J]. 航空计算技术, 2018, 48(1): 123-126. |
MENG S S, SHI G, CUI J. Research on diagnostic technology of aircraft generator rotating rectifier based on DSP[J]. Aeronautical Computing Technique, 2018, 48(1): 123-126 (in Chinese). | |
73 | 刘建英, 董慧芬. 旋转整流器及励磁电路故障双功能和双余度监测电路: CN103852669A[P]. 2017-07-04. |
LIU J Y, DONG H F. Dual function and dual margin monitoring circuit for rotating rectifier and excitation circuit faults: CN103852669A[P]. 2017-07-04 (in Chinese). | |
74 | LIU J Y, GAO K, LIU P F. Design and application for fault monitoring circuit of rotating rectifier in aviation brushless AC generator[C]∥ Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway: IEEE Press, 2014: 1235-1239. |
75 | ZHU W, MA W M, YANG X D, et al. A fault diagnostic method of 24-pulse uncontrolled diode rectifier based on the voltage waveform analysis[C]∥Proceedings of the 2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 2016). Paris: Atlantis Press, 2016: 846-852. |
76 | LEE J U, BAEK S W, CHO K Y, et al. Fault detection of three phase diode rectifier based on harmonic ratio of DC-link voltage ripples[C]∥ 2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS). Piscataway: IEEE Press, 2017: 386-391. |
77 | RAHIMINEJAD M, DIDUCH C, STEVENSON M, et al. Open-circuit fault diagnosis in 3-phase uncontrolled rectifiers[C]∥ 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Piscataway: IEEE Press, 2012: 254-259. |
78 | IORGULESCU M. Study of three-phase bridge rectifier diagnosis based on output voltage and current analysis[C]∥ 2013 8th International Symposium On Advanced Topics In Electrical Engineering (ATEE). Piscataway: IEEE Press, 2013: 1-6. |
79 | JIAO N F, LIU W G, MENG T, et al. Design and control of a two-phase brushless exciter for aircraft wound-rotor synchronous starter/generator in the starting mode[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4452-4461. |
80 | LIU N, LIU Y, XIE C. Fuzzy recognition processing of complex fault signals from the rotating electric circuit in synchronous generators[J]. International Journal of Electrical Power & Energy Systems, 2013, 49: 354-358. |
81 | WU Y C, CAI B C, MA Q Q. An online diagnostic method for rotary diode open-circuit faults in brushless exciters[J]. IEEE Transactions on Energy Conversion, 2018, 33(4): 1677-1685. |
82 | WU Y C, CAI B C, MA Q Q. Research on an online diagnosis for rotating diode faults in three-phase brushless exciter with two coils[J]. IET Electric Power Applications, 2019, 13(1): 101-109. |
83 | SUN C H, LIU W G, HAN X, et al. Fault diagnosis of a rotating rectifier in a wound-rotor synchronous starter/generator in the generation mode[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4569-4582. |
84 | SUN C H, LIU W G, DUAN X L, et al. Rotating rectifier failure detection for brushless synchronous starter/generator in the generator mode[C]∥ IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2020: 2720-2724. |
85 | KJAER P C, KJELLQVIST T, DELALOYE C. Estimation of field current in vector-controlled synchronous machine variable-speed drives employing brushless asynchronous exciters[J]. IEEE Transactions on Industry Applications, 2005, 41(3): 834-840.[LinkOut] |
86 | WEI Z H, LIU W G, PANG J, et al. Fault diagnosis of rotating rectifier based on waveform distortion and polarity of current[J]. IEEE Transactions on Industry Applications, 2019, 55(3): 2356-2367. |
87 | SUN C H, LIU W G, WEI Z H, et al. Open-circuit fault diagnosis of rotating rectifier by analyzing the exciter armature current[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 6373-6385. |
88 | JIAO N F, HAN X, WEI Z H, et al. Online fault diagnosis for rotating rectifier in wound-rotor synchronous starter-generator based on geometric features of current trajectory[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 2952-2963. |
89 | ZHU P R, LIU Y Z, FAN B J. Fault diagnosis of the rotating rectifier diode over a TSSM based on the armature current calculation and similarity measurement[J]. IEEE Access, 2022, 10: 48031-48038. |
90 | 王瑾, 严仰光. 旋转整流器式无刷交、直流发电机谐波电枢反应研究[J]. 南京航空航天大学学报, 2000, 32(3): 257-262. |
WANG J, YAN Y G. Study on harmonic armature reaction of brushless AC & DC generator[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2000, 32(3): 257-262 (in Chinese). | |
91 | LI Y, ZHANG C. Simulation of harmonic armature reaction in synchronous brushless excitation[C]∥ 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC). Piscataway: IEEE Press, 2011: 4304-4306. |
92 | TIAN M M, LI Q F. Harmonic analysis of the exciter's exciting current of a brushless AC generator with a rotary rectifier[C]∥ The 4th International Power Electronics and Motion Control Conference (IPEMC 2004). Piscataway: IEEE Press, 2004: 669-672. |
93 | 陈东华, 张凤雏. 基于傅里叶变换的同步交流发电机旋转整流器故障诊断[J]. 机械制造与自动化, 2017, 46(4): 205-208. |
CHEN D H, ZHANG F C. Fault diagnosis of synchronous AC generator rotating rectifier based on Fourier transform[J]. Machine Building & Automation, 2017, 46(4): 205-208 (in Chinese). | |
94 | 陈亮. 无刷励磁系统旋转二极管故障的在线监测[J]. 云南电力技术, 2014, 42(2): 92-97. |
CHEN L. Research on the on-line monitoring for rotating diode failure of brushless excitation system[J]. Yunnan Electric Power, 2014, 42(2): 92-97 (in Chinese). | |
95 | SUN S, WU Y F, CAI W, et al. Fault diagnosis of rotating rectifier based on harmonic features[J]. IOP Conference Series: Materials Science and Engineering, 2017, 199: 012146. |
96 | 孙硕, 叶志浩, 欧阳斌, 等. 旋转整流器断路故障诊断分析[J]. 海军工程大学学报, 2015, 27(2): 46-50. |
SUN S, YE Z H, OUYANG B, et al. Fault diagnosis and analysis of rotating rectifier breakage[J]. Journal of Naval University of Engineering, 2015, 27(2): 46-50 (in Chinese). | |
97 | SOTTILE J, TRUTT F C, LEEDY A W. Condition monitoring of brushless three-phase synchronous generators with stator winding or rotor circuit deterioration[J]. IEEE Transactions on Industry Applications, 2006, 42(5): 1209-1215. |
98 | 刘繁, 崔江, 林华. 一种航空发电机旋转整流器故障在线诊断技术[J]. 电机与控制应用, 2022, 49(2): 104-108. |
LIU F, CUI J, LIN H. An online diagnosis technology of aero generator rotating rectifier fault[J]. Electric Machines & Control Application, 2022, 49(2): 104-108 (in Chinese). | |
99 | SUN C H, LIU W G, ZHU Y J, et al. High Frequency Voltage Injection based Fault Detection of Rotating Rectifier for Three-stage Synchronous Starter/Generator in the Stationary State[C]∥ 2019 IEEE Applied Power Electronics Conference and Exposition (APEC). Piscataway: IEEE Press, 2019: 1024-1028. |
100 | SUN C H, LIU W G, HAN X, et al. High-frequency voltage injection-based fault detection of a rotating rectifier for a wound-rotor synchronous starter/generator in the stationary state[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 13423-13433. |
101 | ZHANG C, XIA L. A novel online diagnosis of brushless generator rotary rectifier fault[C]∥ 2008 International Conference on Electrical Machines and Systems. Piscataway: IEEE Press, 2008: 835-838. |
102 | LI X Y, LIU W G, JIAO N F, et al. Fault diagnosis of rotating rectifier in aircraft wound-rotor synchronous starter-generator based on stator currents under all operational processes[J]. IEEE Transactions on Power Electronics, 2023, 38(12): 16072-16084. |
103 | MAHTANI K, GUERRERO J M, BEITES L F, et al. Application of a model-based method to the online detection of rotating rectifier faults in brushless synchronous machines[J]. Machines, 2023, 11(2): 223. |
104 | HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. |
105 | 朱佩荣, 刘勇智, 刘棕成, 等. 基于CEEMD与改进的ELM旋转整流器故障诊断[J]. 北京航空航天大学学报, 2023, 49(5): 1166-1175. |
ZHU P R, LIU Y Z, LIU Z C, et al. Fault diagnosis of synchronous generator rotating rectifier based on CEEMD and improved ELM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(5): 1166-1175 (in Chinese). | |
106 | 张敬, 李颖晖, 朱喜华, 等. 基于改进的D-S证据理论的旋转整流器故障诊断研究[J]. 大电机技术, 2012(1): 59-64. |
ZHANG J, LI Y H, ZHU X H, et al. Research on fault diagnosis of rotating rectifie based on improved D-S rule[J]. Large Electric Machine and Hydraulic Turbine, 2012(1): 59-64 (in Chinese). | |
107 | CUI J, SHI G, ZHANG Z R. Fault detection of aircraft generator rotating rectifier based on SAE and SVDD method[C]∥ 2017 Prognostics and System Health Management Conference (PHM-Harbin). Piscataway: IEEE Press, 2017: 1-5. |
108 | CUI J, TANG J X, SHI G, et al. Generator rotating rectifier fault detection method based on stacked auto-encoder[C]∥ 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD). Piscataway: IEEE Press, 2017: 256-261. |
109 | 崔江, 唐军祥, 龚春英, 等. 一种基于改进堆栈自动编码器的航空发电机旋转整流器故障特征提取方法[J]. 中国电机工程学报, 2017, 37(19): 5696-5706. |
CUI J, TANG J X, GONG C Y, et al. A fault feature extraction method of aerospace generator rotating rectifier based on improved stacked auto-encoder[J]. Proceedings of the CSEE, 2017, 37(19): 5696-5706 (in Chinese). | |
110 | JORDAN S, APSLEY J. Open-circuit fault analysis of diode rectified multiphase synchronous generators for DC aircraft power systems[C]∥ 2013 International Electric Machines & Drives Conference. Piscataway: IEEE Press, 2013: 926-932. |
111 | FENG S, CUI J, ZHANG Z R. Fault diagnosis method for an aerospace generator rotating rectifier based on dynamic FFT technology[J]. Metrology and Measurement Systems, 2021, 28(2): 269-288. |
112 | MOHAMMAD-ALIKHANI A, VAHEDI A, RAHNAMA M, et al. A wrapper-based feature selection approach for accurate fault detection of rotating diode rectifiers in brushless synchronous generators[J]. IOP Conference Series: Materials Science and Engineering, 2020, 671(1): 012045. |
113 | RAHNAMA M, VAHEDI A, MOHAMMAD-ALIKHANI A, et al. Diagnosis of brushless synchronous generator using numerical modeling[J]. COMPEL-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2020, 39(5): 1241-1254. |
114 | 陈东华, 张凤雏. 基于小波变换的同步交流发电机旋转整流器故障诊断[J]. 机械制造与自动化, 2018, 47(6): 224-227. |
CHEN D H, ZHANG F C. Fault diagnosis of rotating rectifier of synchronous AC generator based on wavelet transform[J]. Machine Building & Automation, 2018, 47(6): 224-227 (in Chinese). | |
115 | RAHNAMA M, VAHEDI A, ALIKHANI A M, et al. Diode open-circuit fault detection in rectifier bridge of the brushless synchronous generator[C]∥ 2018 XIII International Conference on Electrical Machines (ICEM). Piscataway: IEEE Press, 2018: 1821-1826. |
116 | CHE C C, WANG H W, FU Q, et al. Combining multiple deep learning algorithms for prognostic and health management of aircraft[J]. Aerospace Science and Technology, 2019, 94: 105423. |
117 | TORSTEN H, DAN A, TAL B N, et al. Sparsity in Deep Learning: pruning and growth for efficient inference and training in neural networks[J]. Journal of machine learning research, 2021, 22(241): 1-124. |
118 | LI W H, HUANG R Y, LI J P, et al. A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: theories, applications and challenges[J]. Mechanical Systems and Signal Processing, 2022, 167: 108487. |
119 | QIAN C H, ZHU J J, SHEN Y H, et al. Deep transfer learning in mechanical intelligent fault diagnosis: application and challenge[J]. Neural Processing Letters, 2022, 54(3): 2509-2531. |
120 | HU T H, TANG T, CHEN M. Data simulation by resampling—a practical data augmentation algorithm for periodical signal analysis-based fault diagnosis[J]. IEEE Access, 2019, 7: 125133-125145. |
121 | YUAN Y G, WEI J N, HUANG H S, et al. Review of resampling techniques for the treatment of imbalanced industrial data classification in equipment condition monitoring[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106911. |
122 | THUEREY N, HOLL P, MUELLER M, et al. Physics-based deep learning[DB/OL]. arXiv preprint: 2109.05237,2021. |
123 | HÄGER C, PFISTER H D. Physics-based deep learning for fiber-optic communication systems[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 280-294. |
124 | ARIAS C M, KULKARNI C, GOEBEL K, et al. Fusing physics-based and deep learning models for prognostics[J]. Reliability Engineering & System Safety, 2022, 217: 107961. |
125 | SINGH M, FUENMAYOR E, HINCHY E, et al. Digital twin: origin to future[J]. Applied System Innovation, 2021, 4(2): 36. |
126 | CHEN H Y, ZHANG Z B, KARAMANAKOS P, et al. Digital twin techniques for power electronics-based energy conversion systems: a survey of concepts, application scenarios, future challenges, and trends[J]. IEEE Industrial Electronics Magazine, 2023, 17(2): 20-36. |
127 | TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011(1): 154798. |
128 | DONG Y T, JIANG H K, WU Z H, et al. Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis[J]. Reliability Engineering & System Safety, 2023, 235: 109253. |
129 | 黄文恺, 梁智洪, 王明华,等. 数字孪生在航空航天结构设计、制造和运维中的应用与展望[J]. 图学学报, 2024, 45(2): 241-249. |
HUANG W K, LIANG Z H, WANG M H, et al. Application and prospect of digital twin in the design, manufacturing, and operation of aerospace structures[J]. Journal of Graphics, 2024, 45(2): 241-249 (in Chinese). | |
130 | 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9): 1-12. |
MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 1-12 (in Chinese). | |
131 | AYDEMIR H, ZENGIN U, DURAK U. The digital twin paradigm for aircraft review and outlook[C]∥ Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
132 | YIN Z H, WANG L. Application and development prospect of digital twin technology in aerospace[J]. IFAC-PapersOnLine, 2020, 53(5): 732-737. |
133 | LI L N, ASLAM S, WILEMAN A, et al. Digital twin in aerospace industry: a gentle introduction[J]. IEEE Access, 2022, 10: 9543-9562. |
134 | XIONG M L, WANG H W. Digital twin applications in aviation industry: a review[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(9): 5677-5692. |
[1] | Minghui HU, Jinji GAO, Zhinong JIANG, Weimin WANG, Limin ZOU, Tao ZHOU, Yunfeng FAN, Yue WANG, Jiaxin FENG, Chenyang LI. Research progress on vibration monitoring and fault diagnosis for aero-engine [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 630194-630194. |
[2] | Zhanjun HUANG, Xin DONG, Muyu LU, Ruitao ZHANG, Zhaoyang YAN, An ZHANG. Fault diagnosis of inverter of aviation HVDC sysytem based on DRSN and voltage amplitude analysis [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 328685-328685. |
[3] | Minghui HU, Shaopeng LIU, Hao WANG, Chenyang LI, Weimin WANG, Zhinong JIANG. Characterization and identification of gas turbine blade fracture faults based on broadband vibration [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 230098-230098. |
[4] | Tianqing LI, Weimin WANG, Xulong ZHANG, Shuhui WANG, Zhenyu FU. Identification method of rotor blade axial displacement based on blade tip timing [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 228682-228682. |
[5] | Yonggang CHEN, Kangni LIU, Shuai WANG. Fault knowledge graph construction for aviation equipment based on BiGRU⁃Attention improvement [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 229916-229916. |
[6] | Hui LI, Yinchao CHEN, Shaoshan SUN, Zhaoxin LIANG, Gang MAO, Bin QIAO, Yongbo LI. Fault diagnosis method of rotor system based on federated graph network [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530611-530611. |
[7] | Yuanhao HU, Yibo SONG, Jiahui LIU, Xiaoli ZHAO, Wenxiang DENG, Jian HU, Jianyong YAO. Fault diagnosis of electro-hydraulic proportional servo valves based on attention convolutional capsule networks [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 630407-630407. |
[8] | Jie LI, Wenxin HUANG, Yiming CAI, Siyuan WANG, Yufei GAO, Xuefeng JIANG. Fault diagnosis and fault tolerant control of position sensor based on DFPMM [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329307-329307. |
[9] | Baohui JIA, Fan JIANG, Yuxin WANG, Du WANG. Fault diagnosis method based on civil aircraft maintenance text data [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326598-326598. |
[10] | Jinrui WANG, Shanshan JI, Zongzhen ZHANG, Zhenyun CHU, Baokun HAN, Huaiqian BAO. Parallel sparse filtering for fault diagnosis under bearing acoustic signal [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426887-426887. |
[11] | Zehao CHEN, Hui CHEN, Yushan GAO, Hang ZHANG. Review and prospect of model-based fault diagnosis technology for liquid rocket engines [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629016-629016. |
[12] | Gongye YU, Weidong CAI, Minghui HU, Wencai LIU, Bo MA. Intelligent migration diagnosis of mechanical faults driven by hybrid fault mechanism and domain adaptation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 426800-426800. |
[13] | Fangli WANG, Kai LIU, Wei PAN, Mingbo TONG. Application and development of green structure maintenance for civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 25851-025851. |
[14] | Chenghao GUO, Jinsong YU, Yue SONG, Qi YIN, Jiaxuan LI. Application of digital twin⁃based aircraft landing gear health management technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 227629-227629. |
[15] | Wanli ZHAO, Yingqing GUO, Kejie XU, Cansen WANG, Haojie YING, Xinxin TAO. Review of key technologies for fault diagnosis and accommodation for multi⁃electric distributed engine control system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27519-027519. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341