Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (13): 329535-329535.doi: 10.7527/S1000-6893.2023.29535
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Shan HUANG1, Yongxi LYU1,2(), Qi ZHU1, Kecheng LI1, Jingping SHI1,2
Received:
2023-09-05
Revised:
2023-10-07
Accepted:
2023-12-11
Online:
2024-07-15
Published:
2023-12-18
Contact:
Yongxi LYU
E-mail:yongxilyu@nwpu.edu.cn
Supported by:
CLC Number:
Shan HUANG, Yongxi LYU, Qi ZHU, Kecheng LI, Jingping SHI. Cooperative circumnavigating of unknown target by multi-UAV using only distance measurements[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 329535-329535.
1 | WANG Z, LIU L, LONG T, et al. Multi-UAV reconnaissance task allocation for heterogeneous targets using an opposition-based genetic algorithm with double-chromosome encoding[J]. Chinese Journal of Aeronautics, 2018, 31(2): 339-350. |
2 | ZHEN Z Y, ZHU P, XUE Y X, et al. Distributed intelligent self-organized mission planning of multi-UAV for dynamic targets cooperative search-attack[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2706-2716. |
3 | WANG J, WU Y X, CHEN Y Q, et al. Multi-UAVs collaborative tracking of moving target with maximized visibility in urban environment[J]. Journal of the Franklin Institute, 2022, 359(11): 5512-5532. |
4 | WANG Y X, WANG H L, WU J F, et al. UAV standoff tracking for narrow-area target in complex environment[J]. IEEE Systems Journal, 2022, 16(3): 4583-4594. |
5 | HUANG S, LYU Y X, SHI J P, et al. Standoff tracking of an unknown object with only distance measurements[J]. Aerospace Science and Technology, 2023, 132: 108066. |
6 | 张春燕, 盛安冬, 戚国庆, 等. 基于反步法的有限时间机器人环航控制器设计[J]. 自动化学报, 2019, 45(3): 540-552. |
ZHANG C Y, SHENG A D, QI G Q, et al. Finite-time standoff tracking control of moving target by means of backstepping for non-holonmic robot[J]. Acta Automatica Sinica, 2019, 45(3): 540-552 (in Chinese). | |
7 | SRINIVASU N, RATNOO A. Standoff target tracking using line-of-sight distance bifurcation[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(10): 1934-1945. |
8 | XU B W, ZHANG H T, MENG H F, et al. Moving target surrounding control of linear multiagent systems with input saturation[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(3): 1705-1715. |
9 | SUMMERS T H, AKELLA M R, MEARS M J. Coordinated standoff tracking of moving targets: Control laws and information architectures[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 56-69. |
10 | FREW E W, LAWRENCE D A, MORRIS S. Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(2): 290-306. |
11 | POTHEN A A, RATNOO A. Curvature-constrained Lyapunov vector field for standoff target tracking[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2729-2736. |
12 | KOKOLAKIS N M T, KOUSSOULAS N T. Robust standoff target tracking with finite-time phase separation under unknown wind[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(6): 1183-1198. |
13 | PARK S. Circling over a target with relative side bearing[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(6): 1454-1458. |
14 | PARK S. Guidance law for standoff tracking of a moving object[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(11): 2948-2955. |
15 | KOKOLAKIS N M T, KOUSSOULAS N T. Coordinated standoff tracking of a ground moving target and the phase separation problem[C]∥2018 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2018: 473-482. |
16 | 赵长春, 梁浩全, 祝明, 等. 基于改进RPG方法的MUAVs协同目标跟踪[J]. 航空学报, 2016, 37(5): 1644-1656. |
ZHAO C C, LIANG H Q, ZHU M, et al. MUAVs coordinated standoff target tracking by improved RPG method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1644-1656 (in Chinese). | |
17 | ZHANG M, LIANG C Y, MEI J S. Robust guidance law for cooperative aerial target circumnavigation of UAVs based on composite system theory[J]. Aerospace Science and Technology, 2023, 140: 108439. |
18 | BRIÑÓN-ARRANZ L, SEURET A, PASCOAL A. Circular formation control for cooperative target tracking with limited information[J]. Journal of the Franklin Institute, 2019, 356(4): 1771-1788. |
19 | SHI L L, ZHENG R H, LIU M Q, et al. Distributed circumnavigation control of autonomous underwater vehicles based on local information[J]. Systems & Control Letters, 2021, 148: 104873. |
20 | MUSLIMOV T Z, MUNASYPOV R A. Adaptive decentralized flocking control of multi-UAV circular formations based on vector fields and backstepping[J]. ISA Transactions, 2020, 107: 143-159. |
21 | HE W, LI Z J, PHILIP CHEN C L. A survey of human-centered intelligent robots: Issues and challenges[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 602-609. |
22 | ZHENG R H, LIN Z Y, FU M Y, et al. Distributed control for uniform circumnavigation of ring-coupled unicycles[J]. Automatica (Journal of IFAC), 2015, 53(C): 23-29. |
23 | YU X, XU X, LIU L, et al. Circular formation of networked dynamic unicycles by a distributed dynamic control law[J]. Automatica, 2018, 89: 1-7. |
24 | JAIN P, PETERSON C K, BEARD R W. Encirclement of moving targets using noisy range and bearing measurements[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(8): 1399-1414. |
25 | ZOU Y, WANG L, MENG Z Y. Distributed localization and circumnavigation algorithms for a multiagent system with persistent and intermittent bearing measurements[J]. IEEE Transactions on Control Systems Technology, 2021, 29(5): 2092-2101. |
26 | LI R, SHI Y J, SONG Y D. Localization and circumnavigation of multiple agents along an unknown target based on bearing-only measurement: A three dimensional solution[J]. Automatica (Journal of IFAC), 2018, 94(C): 18-25. |
27 | SEN A, SAHOO S R, KOTHARI M. Circumnavigation on multiple circles around a nonstationary target with desired angular spacing[J]. IEEE Transactions on Cybernetics, 2021, 51(1): 222-232. |
28 | CHEN K, QI G Q, LI Y Y, et al. Finite-time target localization and multicircular circumnavigation with bearing-only measurements[J]. Journal of the Franklin Institute, 2023, 360(9): 6338-6356. |
29 | ZOU Y, YANG W F, HE W, et al. Coordinate-free distributed localization and circumnavigation for nonholonomic vehicles without position information[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 2523-2534. |
30 | CHEN K, QI G Q, LI Y Y, et al. Cooperative localization and circumnavigation of multiple targets with bearing-only measurements[J]. Journal of the Franklin Institute, 2023, 360(12): 9159-9179. |
31 | 张民, 田鹏飞, 陈欣. 一种无人机定距盘旋跟踪制导律及稳定性证明[J]. 航空学报, 2016, 37(11): 3425-3434. |
ZHANG M, TIAN P F, CHEN X. UAV guidance law for circumnavigating and tracking ground target and its stability proof[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3425-3434 (in Chinese). | |
32 | WANG J, MA B L, YAN K. Mobile robot circumnavigating an unknown target using only range rate measurement[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(2): 509-513. |
33 | MILUTINOVIĆ D, CASBEER D, CAO Y C, et al. Coordinate frame free Dubins vehicle circumnavigation using only range-based measurements[J]. International Journal of Robust and Nonlinear Control, 2017, 27(16): 2937-2960. |
34 | DONG F, YOU K Y, SONG S J. Target encirclement with any smooth pattern using range-based measurements[J]. Automatica, 2020, 116: 108932. |
35 | MATVEEV A S, SEMAKOVA A A. Range-only-based three-dimensional circumnavigation of multiple moving targets by a nonholonomic mobile robot[J]. IEEE Transactions on Automatic Control, 2018, 63(7): 2032-2045. |
36 | CAO Y C. UAV circumnavigating an unknown target under a GPS-denied environment with range-only measurements[J]. Automatica, 2015, 55: 150-158. |
37 | DONG F, YOU K Y, XIE L H, et al. Coordinate-free circumnavigation of a moving target via a PD-like controller[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 2012-2025. |
38 | PENG X H, GUO K X, LI X, et al. Cooperative moving-target enclosing control for multiple nonholonomic vehicles using feedback linearization approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(8): 4929-4935. |
39 | CAO Y C, CASBEER D, MILUTINOVIC D, et al. Collective circular motion and cooperative circumnavigation for nonholonomic mobile robots using range-based measurements. Reston: AIAA-2016-2104[R]. Reston: AIAA, 2016. |
40 | JIA J B, CHEN X, WANG W Z, et al. Distributed control of target cooperative encirclement and tracking using range‐based measurements[J]. Asian Journal of Control, 2023, 25(6): 4595-4608. |
41 | MORENO J A, OSORIO M. Strict Lyapunov functions for the super-twisting algorithm[J]. IEEE Transactions on Automatic Control, 2012, 57(4): 1035-1040. |
42 | MILUTINOVIĆ D, CASBEER D, CAO Y C, et al. Coordinate frame free Dubins vehicle circumnavigation[C]∥2014 American Control Conference. Piscataway: IEEE Press, 2014: 891-896. |
43 | ANDERSON B. Exponential stability of linear equations arising in adaptive identification[J]. IEEE Transactions on Automatic Control, 1977, 22(1): 83-88. |
44 | PANTELEY E, LORIA A. On global uniform asymptotic stability of nonlinear time-varying systems in cascade[J]. Systems & Control Letters, 1998, 33(2): 131-138. |
45 | BENABDALLAH A, DLALA M, HAMMAMI M ALI. A new Lyapunov function for stability of time-varying nonlinear perturbed systems[J]. Systems & Control Letters, 2007, 56(3): 179-187. |
46 | KHALIL H K. Nonlinear systems[M]. 3rd ed. Upper Saddle River: Prentice Hall, 2002: 139-144. |
[1] | Zhu WANG, Mengtong ZHANG, Zhenpeng ZHANG, Guangtong XU. Multi-UAV cooperative path planning based on multi-index dynamic priority [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328816-328816. |
[2] | Xiaowei FU, Zhe XU, Jindong ZHU, Nan WANG. Maneuvering decision-making of multi-UAV attack-defence confrontation based on PER-MATD3 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 327083-327083. |
[3] | NIU Guangyue, DUAN Fajie, ZHOU Qi, LIU Zhibo. A dynamic measurement method of blade tip clearance based on microwave phase difference ranging [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625396-625396. |
[4] | FU Xiaowei, WANG Hui, XU Zhe. Cooperative pursuit strategy for multi-UAVs based on DE-MADDPG algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 325311-325311. |
[5] | XUE Zhentao, CHEN Jian, ZHANG Zichao, LIU Xuzan, MIAO Xiansheng, HU Gui. Multi-UAV coverage path planning based on optimization of convex division of complex plots [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 325990-325990. |
[6] | WANG Tong, HUANG Panfeng, DONG Gangqi. Cooperation path planning of multi-UAV in road-network continuous monitoring [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S1): 723753-723753. |
[7] | CHEN Can, MO Li, ZHENG Duo, CHENG Ziheng, LIN Defu. Cooperative attack-defense game of multiple UAVs with asymmetric maneuverability [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(12): 324152-324152. |
[8] | HUANG Yang, TANG Jun, LAO Songyang. UAV flight conflict resolution algorithm based on complex network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(12): 322222-322222. |
[9] | FU Xiaowei, LI Jian, GAO Xiaoguang. Target Allocation in Multi-UAV Cooperative Search with Communication Constraints [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(5): 1347-1356. |
[10] | LIU Haitao, CHENG Wei, ZHANG Xuejun. DME Pulse Interference Mitigation Method Based on Joint Orthogonal Transform and Signal Interleaving [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(5): 1365-1373. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341