[1] ISAACS R. Differential games a mathematical theory with applications to warfare and pursuit, control and optimization[J]. Physics Bulletin, 1966, 17(2):1-2. [2] BERKOVITZ L D. A variational approach to differential games[J]. Annals of Math Study, 1964, 127(52):127-174. [3] HO Y, BRYSON A, BARON S. Differential games and optimal pursuit-evasion strategies[J]. IEEE Transactions on Automatic Control, 1965, 10(4):37-40. [4] KRASOVSKⅡ N N, KOTEL'NIKOVA A N. Unification of differential games, generalized solutions of the Hamilton-Jacobi equations, and a stochastic guide[J]. Differential Equations, 2009, 45(11):1653-1668. [5] KRIKELIS N, REKASIUS Z. On the solution of the optimal linear control problems under conflict of interest[J]. IEEE Transactions on Automatic Control, 1971, 16(2):140-147. [6] INNOCENTI M, SCHMIDT D K. Quadratic optimal cooperative control synthesis with flight control application[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(2):206-214. [7] QIN C B, ZhANG H G, LUO Y H. Model-free adaptive dynamic programming for online optimal solution of the unknown nonlinear zero-sum differential game[C]//Proceedings of the 2014 International Joint Conference on Neural Networks. Piscataway:IEEE Press, 2014:3815-3820. [8] LIU Y F, QI N, TANG Z W. Linear quadratic differential game strategies with two-pursuit versus single-evader[J]. Chinese Journal of Aeronautics, 2012, 25(6):896-905. [9] 谢剑. 基于微分博弈论的多无人机追逃协同机动技术研究[D]. 哈尔滨:哈尔滨工业大学, 2015:32-45. XIE J. Differential game theory for multi UAV pursuit maneuver technology based on collaborative research[D]. Harbin:Harbin Institute of Technology, 2005:32-45(in Chinese) [10] ISLER V, KANNAN S, KHANNA S, et al. Randomized pursuit-evasion in a polygonal environment[J]. IEEE Transactions on Robotics, 2005, 21(5):875-884. [11] YAMAGUCHI H. A cooperative hunting behavior by mobile-robot troops[J]. The International Journal of Robotics Research, 2016, 18(9):931-940. [12] CHEN J, ZHA W Z, PENG Z H, et al. Multi-player pursuit-evasion games with one superior evader[J]. Automatica, 2016, 71(71):24-32. [13] PAN S, HUANG H, DING J, et al. Pursuit, evasion and defense in the plane[C]//Advances in Computing and Communications, 2012:4167-4173. [14] FANG B F, PAN Q S, HONG B R, et al. Research on high speed evader vs multi lower speed pursuers in multi pursuit-evasion games[J]. Information Technology Journal, 2012, 11(8):989-997. [15] CHEN X, WANG Y F. Study on multi-UAV air combat game based on fuzzy strategy[J]. Applied Mechanics and Materials, 2014, 494-495:1102-1105. [16] WANG H P, YUE Q, LIU J T. Research on pursuit-evasion games with multiple heterogeneous pursuers and a high speed evader[C]//Chinese Control and Decision Conference. Piscataway:IEEE Press, 2015:4366-4370. [17] AWHEDA M D, SCHWARTZ H M. A decentralized fuzzy learning algorithm for pursuit-evasion differential games with superior evaders[J]. Journal of Intelligent & Robotic Systems, 2016, 83(1):35-53. [18] LU X S. Multi-agent reinforcement learning in games[D]. Ottawa:Carleton University, 2012:38-159. [19] CHIDOZIE V A. Multi-robot learning in the guarding a territory game[D]. Ottawa:Carleton University, 2016:36-77. [20] DUMAN E, KAYA M, AKIN E, et al. A multi-agent fuzzy-reinforcement learning method for continuous domains[C]//Multi Agent Systems and Applications IV, Lecture Notes in Computer Science. Berlin:Springer-Verlag, 2005:306-315. [21] DAHL F A, HALCK O M. Minimax td-learning with neural nets in a Markov game[C]//European Conference on Machine Learning, 2000:117-128. [22] BOWLING M, VELOSO M. Rational and convergent learning in stochastic games[C]//International Joint Conference on Artificial, 2001:1021-1026. [23] BUSONIU L, BABUSKA R, SCHUTTER B D. Multi-agent reinforcement learning:An overview[M]. Berlin:Springer, 2010:1-3. [24] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[EB/OL].[2020-04-20]. http://www.cs.utoronto.ca/~fidler/teaching/2015/slides/CSC2523/jonathan_rl.pdf. [25] 左家亮, 杨任农, 张滢, 等. 基于启发式强化学习的空战机动智能决策[J]. 航空学报, 2017, 38(10):321168. ZUO J L, YANG R N, ZHANG Y, et al. Intelligent decision-making in air combat maneuvering based on heuristic reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):321168(in Chinese) [26] SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]//International Conference on Machine Learning, 2014:387-395. |