[1] Hagenmaier M A, Tam C J, Chakravarthy S. Study of moving start door flow physics for scramjet, AIAA-1999-4957[R]. Reston: AIAA, 1999.
[2] Huebner L D, Rock K E, Ruf E G, et al. Hyper-X flight engine ground testing for X-43 flight risk reduction, AIAA-2001-1809[R]. Reston: AIAA, 2001.
[3] Grainger A L, Boyce R R, Tirtey S C, et al. The unsteady flow physics of hypersonic inlet starting processes, AIAA-2012-5937[R]. Reston: AIAA, 2012.
[4] Ogawa H, Grainger A L, Boyce R R. Inlet starting of high-contraction axisymmetric scramjets[J]. Journal of Propulsion and Power, 2011, 26(26): 1247-1258.
[5] Zhang L, Zhang K Y, Jin Z G, et al. Numerical simulation of a variable geometry designed with compressible ramp movable[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1800-1808 (in Chinese). 张林, 张堃元, 金志光, 等.高超声速二元进气道顶板移动变几何方案数值模拟[J]. 航空学报, 2012, 33(10): 1800-1808.
[6] Wang Y, Fan X Q, Liang J H, et al. Experimental investigation on the starting characteristics of a hypersonic inlet with moving entrance door[J]. Journal of Aerospace Power, 2008, 23(6): 1014-1018 (in Chinese). 王翼, 范晓樯, 梁剑寒, 等. 开启式高超声速进气道启动性能试验[J]. 航空动力学报, 2008, 23(6): 1014-1018.
[7] Tahir R B, Molder S. Unsteady starting of high Mach number air inlets-A CFD study, AIAA-2003-5191[R]. Reston: AIAA, 2003.
[8] Timofeev E V, Tahir R B, Molder S. On recent developments related to flow starting in hypersonic air intakes, AIAA-2008-2512[R]. Reston: AIAA, 2008.
[9] Wang W X, Guo R W. Numerical study of unsteady starting characteristics of a hypersonic inlet[J]. Chinese Journal of Aeronautics, 2013, 26(3): 563-571.
[10] Clemens N T, Narayanaswamy V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2013, 46: 469-492.
[11] Liang D W, Yuan H C, Zhang X J. Research on the effects of start ability of hypersonic inlet[J]. Journal of Astronautics, 2006, 27(4): 714-719 (in Chinese). 梁德旺, 袁化成, 张晓嘉. 影响高超声速进气道起动能力的因素分析[J]. 宇航学报, 2006, 27(4): 714-719.
[12] Holger B, Harvey J K. Shock wave boundary-layer interactions[M]. Cambridge, UK: Cambridge University Press, 2011: 141-159.
[13] Loth E, Titchener N, Babinsky H, et al. Canonical normal shock wave/boundary-layer interaction flows relevant to external compression inlets[J]. AIAA Journal, 2013, 51(9): 2208-2217.
[14] Zhang X J, Yue L J, Chang X Y. Shock arrangement of ramp compression hypersonic inlet with high internal contraction ratio[J]. Journal of Propulsion Technology, 2012, 33(4): 505-509 (in Chinese) 张晓嘉, 岳连捷, 张新宇. 大内收缩比二元高超声速进气道波系配置特性[J]. 推进技术, 2012, 33(4): 505-509.
[15] Yue L J, Zhang X J, Chen L H, et al. Reaserch on optimal design methodology on 2D hypersonic inlet, CSTAM 2008-0028[R]. [s.l.]: CSTAM, 2008. 岳连捷, 张晓嘉, 陈立红, 等. 二元高超声速进气道优化设计方法研究, CSTAM 2008-0028[R]. [s.l.]: CSTAM, 2008.
[16] Korkegi R H. Compression of shock induced two- and three-dimensional incipient turbulence separation[J]. AIAA Journal, 1975, 13(4): 534-535.
[17] Boyce R R, Gerard S, Paull A. The HyShot scramjet flight experiment—flight data and CFD calculations compared, AIAA-2003-7029[R]. Reston: AIAA, 2003.
[18] Boyce R R, Hillier R. Shock-induced three-dimensional separation of an axisymmetric hypersonic turbulent boundary layer, AIAA-2000-2226[R]. Reston: AIAA, 2000.
[19] Lu H B, Yue L J, Xiao Y B, et al. Interaction of isentropic compression waves with a bow shock[J]. AIAA Journal, 2013, 51(10): 2208-2217.
[20] Lu H B, Yue L J, Chang X Y. Flow characteristics of hypersonic inlets with different cowl-lip blunting methods[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(4): 741-752.
[21] van Wie D M, Kwok F T, Walsh R F. Starting characteristics of supersonic inlets, AIAA-1996-2914[R]. Reston: AIAA, 1996. |