Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (4): 328749-328749.doi: 10.7527/S1000-6893.2023.28749
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Received:
2023-03-28
Revised:
2023-05-04
Accepted:
2023-06-20
Online:
2024-02-25
Published:
2023-06-27
CLC Number:
Table 3
Focusing effect of the algorithms
点目标 | 算法 | 方位向 | 距离向 | ||||
---|---|---|---|---|---|---|---|
PSLR/dB | ISLR/dB | IRW/m | PSLR/dB | ISLR/dB | IRW/m | ||
本文算法 | -13.34 | -10.21 | 1.85 | -13.23 | -10.75 | 1.69 | |
文献[ | -12.99 | -10.82 | 1.86 | -13.49 | -10.49 | 1.88 | |
“停走停”模型下的本文算法 | -12.88 | -9.81 | 1.85 | -13.10 | -10.64 | 2.28 | |
本文算法 | -13.29 | -10.74 | 2.15 | -13.12 | -10.72 | 1.76 | |
文献[ | -13.41 | -10.72 | 2.35 | -13.63 | -10.32 | 1.81 | |
“停走停”模型下的本文算法 | -9.58 | -7.91 | 2.01 | -13.14 | -10.73 | 2.66 | |
本文算法 | -13.05 | 10.56 | 2.28 | -13.10 | -10.64 | 1.71 | |
文献[ | |||||||
“停走停”模型下的本文算法 | -3.07 | -5.20 | 4.23 | -13.20 | -10.54 | 1.83 |
1 | LIU Z T, LI Z Y, HUANG C, et al. Bistatic forward-looking SAR KDCT-FSFT-based refocusing method for ground moving target with unknown curve motion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13( 1): 4848- 4858. |
2 | ZHONG H, LIU X Z. An effective focusing approach for azimuth invariant bistatic SAR processing[J]. Signal Processing, 2010, 90( 1): 395- 404. |
3 | 樊晨阳, 贺思三, 郭乾. 雷达前视成像技术的研究现状[J]. 电光与控制, 2021, 28( 9): 59- 64. |
FAN C Y, HE S S, GUO Q. Research status of radar forward-looking imaging technology[J]. Electronics Optics & Control, 2021, 28( 9): 59- 64 (in Chinese). | |
4 | ZHANG X H, GU H, SU W M. Squint-minimised chirp scaling algorithm for bistatic forward-looking SAR imaging[J]. IET Radar, Sonar & Navigation, 2020, 14( 2): 290- 298. |
5 | ZHONG H, ZHAO R H, SONG H N, et al. An improved imaging algorithm for high-resolution and highly squinted one-stationary bistatic SAR using extended nonlinear chirp scaling based on equi-sum of bistatic ranges[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18( 7): 1244- 1248. |
6 | ZHANG Q H, WU J J, QU J Y, et al. Echo model without stop-and-go approximation for bistatic SAR with maneuvers[C]∥ IEEE Geoscience and Remote Sensing Letters. Piscataway: IEEE Press, 2019: 1056- 1060. |
7 | ZHOU S, YANG L, ZHAO L F, et al. A new fast factorized back projection algorithm for bistatic forward-looking SAR imaging based on orthogonal elliptical polar coordinate[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12( 5): 1508- 1520. |
8 | ZHANG Q H, WU J J, LI Z Y, et al. PFA for bistatic forward-looking SAR mounted on high-speed maneuvering platforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57( 8): 6018- 6036. |
9 | XIONG T, LI Y C, LI Q, et al. Using an equivalence-based approach to derive 2-D spectrum of BiSAR data and implementation into an RDA processor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59( 6): 4765- 4774. |
10 | XIONG J T, XIAN L, HUANG Y L, et al. Research on improved RD algorithm for airborne bistatic SAR and experimental data processing[C]∥ 7th European Conference on Synthetic Aperture Radar. Piscataway: IEEE Press, 2011: 978- 982. |
11 | WANG W, LIAO G S, LI D, et al. Focus improvement of squint bistatic SAR data using azimuth nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11( 1): 229- 233. |
12 | LIU W K, SUN G C, XIA X G, et al. A modified CSA based on joint time-Doppler resampling for MEO SAR stripmap mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56( 6): 3573- 3586. |
13 | DING J B, LI Y C, QUAN Y H, et al. Analysis of diving configuration of bistatic forward-looking SAR based on nonlinear chirp scaling algorithm[C]∥ 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar. Piscataway: IEEE Press, 2019: 2474- 2478. |
14 | ZHANG Q H, WU J J, YANG J Y, et al. Extended nonlinear chirp scaling algorithm with topography compensation for maneuvering-platform bistatic forward-looking SAR[C]∥ 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway: IEEE Press, 2017: 1047- 1050. |
15 | WANG Z G, LIU M, AI G T, et al. Focusing of bistatic SAR with curved trajectory based on extended azimuth nonlinear chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58( 6): 4160- 4179. |
16 | ZENG T, HU C, WU L X, et al. Extended NLCS algorithm of BiSAR systems with a squinted transmitter and a fixed receiver: Theory and experimental confirmation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51( 10): 5019- 5030. |
17 | LI S P, ZHONG H, YANG C L . et al. Focusing nonparallel-track bistatic SAR data using modified frequency extended nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19( 12): 1545- 1550. |
18 | LI C, ZHANG H, DENG Y K, et al. Focusing the L-band spaceborne bistatic SAR mission data using a modified RD algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58( 1): 294- 306. |
19 | DING J B, LI Y C, LI M, et al. Focusing high maneuvering bistatic forward-looking SAR with stationary transmitter using extended keystone transform and modified frequency nonlinear chirp scaling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15( 3): 2476- 2492. |
20 | LIANG M, SU W M, GU H. Focusing high-resolution high forward-looking bistatic SAR with nonequal platform velocities based on keystone transform and modified nonlinear chirp scaling algorithm[J]. IEEE Sensors Journal, 2019, 19( 3): 901- 908. |
21 | 徐熙毅, 谭鸽伟, 李彪. 基于空变分离的两步聚焦双基曲线合成孔径雷达成像[J]. 兵工学报, 2022, 43( 6): 1365- 1375. |
XU X Y, TAN G W, LI B. Two-step imaging of bistatic SAR with curvilinear trajectory based on space-variant separation[J]. Acta Armamentarii, 2022, 43( 6): 1365- 1375 (in Chinese). | |
22 | ZHANG X H, GU H, SU W M. Focusing bistatic forward-looking SAR images use omega-k algorithm based on modified hyperbolic approximating[C]∥ 2019 International Conference on Control, Automation and Information Sciences (ICCAIS). Piscataway: IEEE Press, 2019: 986- 990. |
23 | 董祺, 杨泽民, 李震宇, 等. 基于方位空变斜距模型的大斜视机动平台波数域SAR成像算法[J]. 电子与信息学报, 2016, 38( 12): 3166- 3173. |
DONG Q, YANG Z M, LI Z Y, et al. Wavenumber-domain imaging algorithm for high squint SAR based on azimuth variation range model[J]. Journal of Electronics & Information Technology, 2016, 38( 12): 3166- 3173 (in Chinese). |
[1] | Qiuyu LIU, Yanwen JIANG, Hongqi FAN, Hongfei LIAN. Low-complexity Nyström-MUSIC method based on prior information [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 629226-629226. |
[2] | . Intelligent TBD algorithm for maneuvering weak targets based on TransUNet [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[3] | Penghui JI, Shiqi XING, Dahai DAI, Bo Pang, Dejun FENG. A SAR scene deceptive jamming method based on range convolution and azimuth multiplication modulation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 328235-328235. |
[4] | Lianzi WANG, Ling WANG, Daiyin ZHU. An ISAR autofocus imaging algorithm based on FCN and transfer learing [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 328172-328172. |
[5] | Jinwei JIA, Limin LIU, Zhuangzhi HAN, Hui XIE. Design of anti-SDIF radio frequency stealth signal and echo signal processing technology based on compressed sensing [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 327934-327934. |
[6] | Zheng YE, Daiyin ZHU, Di WU. SAR image registration algorithm based on echo information of overlapping subaperture [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 327254-327254. |
[7] | Wenbin YANG, Yuebin WANG, Dan LI, Jianqiu ZHANG. A moving target detector with coherent integration of Bayesian-inferred motion trajectories [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 326823-326823. |
[8] | Tingkun ZHANG, Zheng LI, Xudong WEN, Yiqing HONG, Bowen BAI. Long-term energy focusing method for target covered by plasma sheath [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 67-75. |
[9] | BO Juntian, WANG Guohong, YU Hongbo, PENG Zhigang. Track before detect algorithm based on parallel-line-coordinate transformation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 325644-325644. |
[10] | YI Xiao, DU Jinpeng, ZHANG Tianshu. Asynchronous anti-bias track-to-track association algorithm of multi-local nodes [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 324494-324494. |
[11] | BAO Yue, CHEN Junyu, SHI Tianyue, MAO Xinhua. Error model-aided autofocus for airborne high resolution wide swath DBF-SAR [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 324502-324502. |
[12] | ZHANG Tao, ZHONG Lunlong, LAI Ran, GUO Juncheng. Sparse Bayesian learning method for eliminating dictionary mismatch in clutter space-time spectrum estimation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 324592-324592. |
[13] | CHEN Jianping, XU Haoji, ZHANG Yong. Health state assessment of airborne radar based on channel calibration and HMM [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 323983-323983. |
[14] | YI Xiao, DU Jinpeng. Asynchronous track-to-track association algorithm based on discrete degree of segmented sequence [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 323694-323694. |
[15] | MENG Tingting, TAN Gewei, LI Menghui, YANG Jingjing, LI Biao, XU Xiyi. Chirp Scaling algorithm based on Chebyshev orthogonal decomposition for curve trajectory SAR [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 323741-323741. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341