[1] SMITH K, BUTT J, SPAKOVSKY M V, et al. A study of the benefits of using morphing wing technology in fighter aircraft systems[C]//39th AIAA Thermophysics Conference. Reston:AIAA, 2007:1-12. [2] CISTONE J. Next century aerospace traffic management:The sky is no longer the limit[J]. Journal of Aircraft, 2015, 41(1):36-42. [3] LENTINK D, MUELLER U K, STAMHUIS E J, et al. How swifts control their glide performance with morphing wings[J]. Nature, 2007, 446:1082-1085. [4] PETERS C, ROTH B, CROSSLEY W A, et al. Use of design methods to generate and develop missions for morphing aircraft[C]//9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston:AIAA, 2002:1-8. [5] BRAILOVSKI V, TERRIAULT P, GEORGES T, et al. SMA actuators for morphing wings[J]. Physics Procedia, 2010, 10(12):197-203. [6] HENRY J J, BLONDEAU J E, PINES D J. Stability analysis for UAVs with a variable aspect ratio wing[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2005:3039-3048. [7] HONG C H, CHEPLAK M, CHOI J, et al. Flexible multibody design of a morphing UCAV[C]//AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit. Reston:AIAA, 2004:1-11. [8] NARCIS U, TOMAS M, ASKIN T, et al. Morphing winglets for aircraft multi-phase improvement[C]//7th AIAA Aviation Technology, Integration and Operation (ATIO) Conference. Reston:AIAA, 2007:1-12. [9] BOURDIN P, GATTO A, FRISWELL M I. Aircraft control via variable cant-angle winglets[J]. Journal of Aircraft, 2008, 45(2):78-86. [10] GROGORIE T L, POPOV A V, BOTEZ R M. Control of actuation system based smart material actuators in a morphing wing experimental model[C]//AIAA Atmospheric Flight Mechanics (AFM) Conference. Reston:AIAA, 2013:1-13. [11] PERKINS D A, REED J L, HAVENS E. Morphing wing structures for loitering air vehicles[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Materials Conference. Reston:AIAA, 2004:1-10. [12] HETRICK J A. Design and application of compliant mechanisms for morphing aircraft structures[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2003, 5054:24-33. [13] GAO B, KANG R, CHEN Y. Deployable mechanism design for span morphing wing aircraft[M]. 2017:801-813 [14] 景藜,张永红,葛文杰,等.基于载荷路径法的柔性机翼前缘拓扑优化[J].机械设计, 2011, 28(1):85-89. JING L, ZHANG Y H, GE W J, et al. Topology optimization for leading edge of flexible wing based on load path approach[J]. Journal of Machine Design, 2011, 28(1):85-89(in Chinese). [15] 寇鑫,葛文杰.基于多点驱动式柔性机构的变形翼后缘拓扑优化[J].机械强度, 2018, 40(4):983-986. KOU X, GE W J. Topology optimization of morphing wing trailing edge based on multi-points driving compliant mechanism[J]. Journal of Mechanical Strength, 2018, 40(4):983-986(in Chinese). [16] 董二宝.智能变形飞行器结构实现机制与若干关键技术研究[D].合肥:中国科学技术大学, 2010:150-175. DONG E B. Research on realization mechanism and some key technologies of smart morphing aircraft structures[D]. Hefei:University of Science and Technology China, 2010:150-175(in Chinese). [17] 陈钱,尹维龙,白鹏,等.变后掠变展长翼身组合体系统设计与特性分析[J].航空学报, 2010, 31(3):506-513. CHEN Q, YIN W L, BAI P, et al. System Design and characteristics analysis of a variable-sweep and varible-span Wing-body[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):506-513(in Chinese). [18] 张科,袁慎芳,任元强,等.基于逆向有限元法的变形机翼鱼骨的变形重构[J].航空学报, 2020, 41(8):223617. ZHANG K, YUAN S F, REN Y Q, et al. Shape reconstruction of self-adaptive morphing wings'fishbone based on inverse finite element method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):223617(in Chinese). [19] 何萌,杨体浩,白俊强,等.基于后缘襟翼偏转的大型客机边弯度技术减阻收益[J].航空学报, 2020, 41(7):123462. HE M, YANG T H, BAI J Q, et al. Drag reduction benefits of variable camber technology of airliner based on trailing-edge flap deflection[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):123462(in Chinese). [20] SOFLA A Y N, ELZEY D M, WADLEY H N G. Shape morphing hinged truss structures[J]. Smart Materials&Structures, 2009, 18(6):065012. [21] SOFLA A Y N, ELZEY D M, WADLEY H N G. A rotational joint for shape morphing space truss structures[J]. Smart Materials&Structures, 2007, 16(4):1277. |