ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (11): 427549-427549.doi: 10.7527/S1000-6893.2022.27549
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
Yongsheng YE1,2, Di DING2, Haihua WU1,2(), Enyi HE1,2, Shihao YIN2, Zhenglang HU2, Chao YANG2
Received:
2022-05-31
Revised:
2022-06-16
Accepted:
2022-07-18
Online:
2023-06-15
Published:
2022-08-03
Contact:
Haihua WU
E-mail:wuhaihua@ctgu.edu.cn
Supported by:
CLC Number:
Yongsheng YE, Di DING, Haihua WU, Enyi HE, Shihao YIN, Zhenglang HU, Chao YANG. Graphene-enhanced Fe3O4/ethylcellulose composite microspheres with wave absorption properties[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 427549-427549.
Table 2
Performance comparison of Fe3O4-rGO composite absorbing materials reported in recent literature
材料 | 基体 | 最小反射损耗/dB | 厚度/mm | 有效吸收频宽/GHz |
---|---|---|---|---|
Fe3O4/rGO[ | 石蜡 | -22.10 | 5.00 | 3.30 |
Fe3O4/rGO[ | 石蜡 | -22.70 | 3.13 | |
Fe3O4-rGO[ | 石蜡 | -30.10 | 1.48 | |
rGO/Fe3O4[ | 石蜡 | -42.10 | 3.50 | |
rGO-Fe3O4[ | 石蜡 | -48.60 | 2.10 | 6.32 |
Fe3O4/rGO[ | 石蜡 | -65.10 | 1.70 | 4.64 |
Fe3O4/石墨烯纳米片[ | 石蜡 | -8.75 | 1.50 | -2.50 |
Fe3O4/poly/rGO[ | 石蜡 | -15.68 | 4.00 | 2.00 |
Fe3O4/Fe纳米环@rGO[ | 石蜡 | -23.09 | 4.00 | 3.90 |
Fe3O4@C/rGO[ | 石蜡 | -59.23 | 1.50 | 6.24 |
Fe3O4@SiO2/rGO[ | 石蜡 | -55.40 | 3.50 | 6.24 |
C-Fe3O4/石墨烯[ | 石蜡 | -31.20 | 10.00 | |
石墨烯纳米片-介孔Fe3O4@ZnO[ | 石蜡 | -40.00 | 11.40 |
1 | HARUSSANI M M, SAPUAN S M, NADEEM G, et al. Recent applications of carbon-based composites in defence industry: A review[J]. Defence Technology, 2022, 18(8): 1281-1300. |
2 | WANG Q, SUN LING NA, HU CHANG WEN, et al. Research of novel functional stealthy nanomaterials[J]. Advanced Materials Research, 2012, 534: 73-77. |
3 | KUZHIR P, VOLYNETS N, MAKSIMENKO S, et al. Multilayered graphene in Kα-band: Nanoscale coating for aerospace applications[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(8): 5864-5867. |
4 | 杨喜, 曹敏, 简煜, 等. 多孔木炭/Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 4590-4601. |
YANG X, CAO M, JIAN Y, et al. Preparation and microwave absorption properties of porous charcoal/Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4590-4601 (in Chinese). | |
5 | CAO M S, HAN C, WANG X X, et al. Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves[J]. Journal of Materials Chemistry C, 2018, 6(17): 4586-4602. |
6 | ZENG X J, YANG B, YANG H Z, et al. Solvothermal synthesis and good microwave absorbing properties for magnetic porous-Fe3O4/graphene nanocomposites[J]. AIP Advances, 2016, 7(5): 056605. |
7 | WANG H S, SHI P P, RUI M, et al. The green synthesis rGO/Fe3O4/PANI nanocomposites for enhanced electromagnetic waves absorption[J]. Progress in Organic Coatings, 2020, 139: 105476. |
8 | 李国显, 王涛, 薛海荣, 等. 石墨烯/Fe3O4复合材料的制备及电磁波吸收性能[J]. 航空学报, 2011, 32(9): 1732-1739. |
LI G X, WANG T, XUE H R, et al. Synthesis of graphene/Fe3O4 composite materials and their electromagnetic wave absorption properties[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1732-1739 (in Chinese). | |
9 | YANG Y N, XIA L, ZHANG T, et al. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance[J]. Chemical Engineering Journal, 2018, 352: 510-518. |
10 | LIU Z C, XIANG Z, DENG B W, et al. Rational design of hierarchical porous Fe3O4/rGO composites with lightweight and high-efficiency microwave absorption[J]. Composites Communications, 2020, 22: 100492. |
11 | LI J C, ZHAO X Y, WU W J, et al. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity[J]. Chemical Engineering Journal, 2021, 415: 129054. |
12 | XIANG Z, SONG Y M, XIONG J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks[J]. Carbon, 2019, 142: 20-31. |
13 | 谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2238-2248. |
XIE W H, GENG H R, LIU Y, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248 (in Chinese). | |
14 | 马志军, 莽昌烨, 翁兴媛, 等. Zn还原氧化石墨烯(RGO)和ZnO/RGO自组装复合材料的电磁响应行为[J]. 复合材料学报, 2019, 36(7): 1776-1786. |
MA Z J, MANG C Y, WENG X Y, et al. Electromagnetic response behavior of Zn reduced graphene oxide(RGO)and ZnO/RGO self-assembled composites[J]. Acta Materiae Compositae Sinica, 2019, 36(7): 1776-1786 (in Chinese). | |
15 | XIANG J, LI J L, ZHANG X H, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry A, 2014, 2(40): 16905-16914. |
16 | LIN Y, DAI J J, YANG H B, et al. Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties[J]. Chemical Engineering Journal, 2018, 334: 1740-1748. |
17 | ZHAO X X, HUANG Y, LIU X D, et al. Core-shell CoFe2O4@C nanoparticles coupled with rGO for strong wideband microwave absorption[J]. Journal of Colloid and Interface Science, 2022, 607: 192-202. |
18 | MAGISETTY R, RAJ A B, DATAR S, et al. Nanocomposite engineered carbon fabric-mat as a passive metamaterial for stealth application[J]. Journal of Alloys and Compounds, 2020, 848: 155771. |
19 | TAO J Q, ZHOU J T, YAO Z J, et al. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties[J]. Carbon, 2021, 172: 542-555. |
20 | DI X C, WANG Y, LU Z, et al. Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption[J]. Carbon, 2021, 179: 566-578. |
21 | 王跃毅, 鄢定祥, 李忠明. 碳纳米管/聚酰亚胺泡沫的制备及其吸波性能[J]. 航空学报, 2022, 43(7): 425531. |
WANG Y Y, YAN D X, LI Z M. Preparation of carbon nanotubes/polyimide foam and its microwave absorption properties[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 425531 (in Chinese). | |
22 | CAO M S, SHU J C, WANG X X, et al. Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency[J]. Annalen der Physik, 2019, 531(4): 1800390. |
23 | ZHANG Y L, WANG X X, CAO M S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption[J]. Nano Research, 2018, 11(3): 1426-1436. |
24 | LIU P B, GAO S, WANG Y, et al. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials[J]. Chemical Engineering Journal, 2020, 381: 122653. |
25 | 胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7): 3303-3316. |
HU Z L, WU H H, YANG Z H, et al. Preparation of graphene-iron-nickel alloy-polylactic acid composites and their microwave absorption properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3303-3316 (in Chinese). | |
26 | ZHANG M, QIAN X, ZENG Q W, et al. Hollow microspheres of polypyrrole/magnetite/carbon nanotubes by spray-dry as an electromagnetic synergistic microwave absorber[J]. Carbon, 2021, 175: 499-508. |
27 | ZHANG Z W, CAI Z H, WANG Z Y, et al. A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials[J]. Nano-Micro Letters, 2021, 13(1): 1-29. |
28 | TANG M, ZHANG J Y, BI S, et al. Ultrathin topological insulator absorber: Unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33285-33291. |
29 | SUN X, HE J P, LI G X, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C, 2013, 1(4): 765-777. |
30 | WU J M, YE Z M, LIU W X, et al. The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids[J]. Ceramics International, 2017, 43(16): 13146-13153. |
31 | LI X H, YI H B, ZHANG J W, et al. Fe3O4-graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range[J]. Journal of Nanoparticle Research, 2013, 15(3): 1-11. |
32 | WANG Y P, PENG Z, JIANG W. Size-controllable synthesis of Fe3O4 nanospheres decorated graphene for electromagnetic wave absorber[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(6): 6010-6019. |
33 | LIU X D, HUANG Y, DING L, et al. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2021, 72: 93-103. |
34 | YIN Y C, ZENG M, LIU J, et al. Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites[J]. Scientific Reports, 2016, 6(1): 1-10. |
35 | ZHENG J, LV H L, LIN X H, et al. Enhanced microwave electromagnetic properties of Fe3O4/graphene nanosheet composites[J]. Journal of Alloys and Compounds, 2014, 589: 174-181. |
36 | LIU X D, ZHAO X X, YAN J, et al. Enhanced electromagnetic wave absorption performance of core-shell Fe3O4@poly (3, 4-ethylenedioxythiophene) microspheres/reduced graphene oxide composite[J]. Carbon, 2021, 178: 273-284. |
37 | DING Y, ZHANG L, LIAO Q L, et al. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings[J]. Nano Research, 2016, 9(7): 2018-2025. |
38 | ZHANG H X, JIA Z R, FENG A L, et al. In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber[J]. Composites Part B: Engineering, 2020, 199: 108261. |
39 | LIU X D, HUANG Y, YAN J, et al. Covalently bonded Fe3O4@SiO2-reduced graphene oxide nanocomposites as high-efficiency electromagnetic wave absorbers[J]. Ceramics International, 2020, 46: 5175-5184. |
40 | YANG C, DAI S L, ZHANG X Y, et al. Electromagnetic wave absorption property of graphene with Fe3O4 nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(2): 1483-1490. |
41 | SUN D P, ZOU Q, WANG Y P, et al. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption[J]. Nanoscale, 2014, 6(12): 6557-6562. |
42 | 康越, 原博, 马天, 等. 基于石墨烯的电磁波损耗材料研究进展[J]. 无机材料学报, 2018, 33(12): 1259-1273. |
KANG Y, YUAN B, MA T, et al. Development of microwave absorbing materials based on graphene[J]. Journal of Inorganic Materials, 2018, 33(12): 1259-1273 (in Chinese). |
[1] | Yulian GONG, Jianguo ZHANG, Zhigang WU, Guangyuan CHU, Xiaoduo FAN, Ying HUANG. Reliability algorithm of composite structure based on active learning basis-adaptive PC-Kriging model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 228982-228982. |
[2] | Wenbin JIA, Lei FANG, Gen ZHANG, Jian SHI, Zekan HE, Haijun XUAN. Optimal design of fracture toughness for CNT⁃epoxy composites [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 428971-428971. |
[3] | Chunyun ZHANG, Xiongbin CHEN, Jian LIU, Miao CUI. Prediction of thermo⁃physical properties of inorganic⁃organic hybrid phenolic aerogel composites [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 428848-428848. |
[4] | Lingcai HUANG. Review of nondestructive testing methods for fiber⁃reinforced polymer composites [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529697-529697. |
[5] | Zhiting GAO, Zhuang MA, Yanbo LIU. Effect of CVD-SiC array structure on ablation resistance of ZrB2/SiC coatings [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 428842-428842. |
[6] | Chao ZHANG, Yong CAO, Zhenqiang ZHAO, Haiyang ZHANG, Jianbo SUN, Zhihua WANG, Duokui YU. Applications and key challenges of polymer composites in civil aero⁃engines: State⁃of⁃art review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 28556-028556. |
[7] | Ying MA, Ao CHEN, Congying DENG, Xiang CHEN, Sheng LU, Xianjun ZENG. A multiscale mesh generation method for textile composite [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 429180-429180. |
[8] | Qian YANG, Yanzhe WANG, Di YANG, Zezhong LI, Weiwei QU. Prediction and planning of automatic laying speed for fiber reinforced composite materials based on data⁃driven model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 429313-429313. |
[9] | Hongyue WANG, Bing WANG, Guodong FANG, Songhe MENG. Digital element modelling and analysis of 2.5D woven shallow cross bending composites [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 227478-227478. |
[10] | Jian HAN, Shiyong SUN, Bin NIU, Rui YANG, Dongjiang WU. Progress in manufacturing technologies of resin⁃based composite lattice structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 628255-628255. |
[11] | Qingcai ZHANG, Song LIU, Qinqin WANG, Xiaoming TAN, Jingzhou ZHANG, Wen GUO. Experiment on composite rim seal with deep cavity in static disc and modified platform [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126719-126719. |
[12] | Liping LIU, Yuyang QI, Yueguo LIN, Rui BAO, Jianxin XU, Zhenyu FENG, Guanghui QING. Tensile failure of carbon fiber composite material bonded-rivet hybrid repaired structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 428676-428676. |
[13] | Xiaoping LI, Min YANG, Bo YAO, Yanming LIU, Lei SHI, Haoyan LIU, Chengguang LI. Reliable communication technologies of reusable launch vehicles in cooperation with satellite during re-entry [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628906-628906. |
[14] | Ruifeng LIU, Xiaozhe SUN, Wenhui LI, Xian WANG, Jie YAN. Microcrack healing mechanism and microstructure properties of SiC/Al composites modified by high frequency pulse current [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 428598-428598. |
[15] | Junchao YANG, Xueming WANG, Xiangming CHEN, Peng ZOU, Zhe WANG. Effect of low-velocity impact damage on compressive properties of composite stiffened panels [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 228498-228498. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341