ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (2): 626413-626413.doi: 10.7527/S1000-6893.2021.26413
• Special Topic of Advanced Aeronautical Materials Welding/Joining • Previous Articles
FENG Jicai
Received:
2021-09-18
Revised:
2021-10-14
Published:
2021-12-09
Supported by:
CLC Number:
FENG Jicai. Research progress on dissimilar materials joining[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 626413-626413.
[1] EUSTATHOPOULOS N, LANDRY K. Dynamics of wetting in reactive metal/ceramic systems:Linear spreading[J].Acta Materialia, 1996, 44(10):3923-3932. [2] DEZELLUS O, HODAJ F, EUSTATHOPOULOS N. Chemical reaction-limited spreading:the triple line velocity versus contact angle relation[J].Acta Materialia, 2002, 50(19):4741-4753. [3] MORTENSEN A, DREVET B, EUSTATHOPOULOS N. Kinetics of diffusion-limited spreading of sessile drops in reactive wetting[J].Scripta Materialia, 1997, 36(6):645-651. [4] YANG L, SHEN P, LIN Q, et al. Effect of Cr on the wetting in Cu/graphite system[J].Applied Surface Science, 2011, 257(14):6276-6281. [5] SAIZ E, TOMSIA A P. Kinetics of high-temperature spreading[J].Current Opinion in Solid State and Materials Science, 2005, 9(4-5):167-173. [6] CHIHIRO I, SHUN-ICHIRO T. Reactive wetting of Ag-Cu-Ti on SiC in HRTEM[J].Acta Materialia, 1998, 46(7):2381-2386. [7] NOMURA M, ICHIMORI T, IWAMOTO C, et al. Structure of wetting front in the Ag-Cu-Ti/SiC reactive system[J].Journal of Materials Science, 2000, 35(16):3953-3958. [8] GREMILLARD L, SAIZA E, CHEVALIERB J, et al. Wetting and strength in the tin-silver-titanium/sapphire system[J].Zeitschrift Für Metallkunde, 2004, 95(4):261-265. [9] FU W, SONG X G, ZHAO Y X, et al. Effect of Ti content on the wetting behavior of Sn0.3Ag0.7Cu/AlN system[J].Materials & Design, 2017, 115:1-7. [10] SONG X, PASSERONE A, FU W, et al. Wetting and spreading behavior of Sn-Ti alloys on SiC[J].Materialia, 2018, 3:57-63. [11] FU W, PASSERONE A, BIAN H, et al. Wetting and interfacial behavior of Sn-Ti alloys on zirconia[J].Journal of Materials Science, 2019, 54(1):812-822. [12] SUI R, JU C, ZHONG W, et al. Improved wetting of Al2O3 by molten Sn with Ti addition at 973-1273 K[J].Journal of Alloys and Compounds, 2018, 739:616-622. [13] AN Q, CONG X, SHEN P, et al. Roles of alloying elements in wetting of SiC by Al[J].Journal of Alloys and Compounds, 2019, 784:1212-1220. [14] VALENZA F, GAMBARO S, MUOLO M L, et al. Wetting of SiC by Al-Ti alloys and joining by in-situ formation of interfacial Ti3Si(Al)C2[J].Journal of the European Ceramic Society, 2018, 38(11):3727-3734. [15] SONG X, ZHAO Y, HU S, et al. Wetting of AgCu-Ti filler on porous Si3 N4 ceramic and brazing of the ceramic to TiAl alloy[J].Ceramics International, 2018, 44(5):4622-4629. [16] KOLTSOV A, DUMONT M, HODAJ F, et al. Influence of Ti on wetting of AlN by Ni-base alloys[J].Materials Science and Engineering:A, 2006, 415(1-2):171-176. [17] SIEGMUND P, GUHL C, SCHMIDT E, et al. Reactive wetting of alumina by Ti-rich Ni-Ti-Zr alloys[J].Journal of Materials Science, 2016, 51(8):3693-3700. [18] LIN Q L, WANG L, SUI R. Wetting of AlN by moten Cu-8.6Zr-xTi ternary alloys at 1373 K[J].Acta Materialia, 2021, 203:116488. [19] LIN Q L, LIU L, YANG H Y, et al. Wetting of SiC by molten Cu-20Me-2Cr (Me=Ag, Mn, Si, and Sn) alloys at 1373 K[J].Vacuum, 2021, 185:110002. [20] 梁赤勇,堵永国,张为军,等. Cf/SiC复合材料表面熔盐反应法锆金属化研究[J].航空材料学报, 2009, 29(2):92-96.LIANG C Y, DU Y G, ZHANG W J, et al. Study on zirconium metallic coating for Cf/SiC composites by molten salt reaction[J].Journal of Aeronautical Materials, 2009, 29(2):92-96(in Chinese). [21] SALVO M, CASALEGNO V, RIZZO S, et al. One-step brazing process to join CFC composites to copper and copper alloy[J].Journal of Nuclear Materials, 2008, 374(1-2):69-74. [22] MIARNAU MARIN A, SCHNEIDER G, VENESS R. Development and test of a rectangular CERN ConFlat-type flange[J].Vacuum, 2015, 121:202-206. [23] 郭夏君. 陶瓷-金属低温超声钎焊方法及其连接机理研究[D]. 哈尔滨:哈尔滨工业大学, 2019.GUO X J. Study on method and mechanism of ultrasonic assisted soldering of ceramic-metal joints[D]. Harbin:Harbin Institute of Technology, 2019(in Chinese). [24] HE Z J, LI C, QI J L, et al. Pre-infiltration and brazing behaviors of Cf/C composites with high temperature Ti-Si eutectic alloy[J].Carbon, 2018, 140:57-67. [25] QI J L, LIN J H, GUO J L, et al. Plasma treatment on SiO2f/SiO2 composites for their assisted brazing with Nb[J].Vacuum, 2016, 123:136-139. [26] SI X Q, CAO J, RITUCCI I, et al. Enhancing the long-term stability of Ag based seals for solid oxide fuel/electrolysis applications by simple interconnect aluminization[J].International Journal of Hydrogen Energy, 2019, 44(5):3063-3074. [27] CAO J, WANG Z Q, LI C, et al. Microstructure evolution and mechanical properties of Co coated AISI 441 ferritic stainless steel/YSZ reactive air brazed joint[J].International Journal of Hydrogen Energy, 2021, 46(12):8758-8766. [28] WANG H Q, CAO J, FENG J C. Brazing mechanism and infiltration strengthening of CC composites to TiAl alloys joint[J].Scripta Materialia, 2010, 63(8):859-862. [29] ZHANG Q, SUN L B, LIU Q Y, et al. Effect of brazing parameters on microstructure and mechanical properties of Cf/SiC and Nb-1Zr joints brazed with Ti-Co-Nb filler alloy[J].Journal of the European Ceramic Society, 2017, 37(3):931-937. [30] REN H S, XIONG H P, LONG W M, et al. Interfacial diffusion reactions and mechanical properties of Ti3Al/Ni-based superalloy joints brazed with AgCuPd filler metal[J].Materials Characterization, 2018, 144:316-324. [31] LIU D, ZHAO K H, SONG Y Y, et al. Effect of introducing carbon fiber into AgCuTi filler on interfacial microstructure and mechanical property of C/C-TC4 brazed joints[J].Materials Characterization, 2019, 157:109890. [32] DAI X Y, CAO J, WANG Z C, et al. Brazing ZrO2 ceramic and TC4 alloy by novel WB reinforced Ag-Cu composite filler:Microstructure and properties[J].Ceramics International, 2017, 43(17):15296-15305. [33] LI C, CHEN L, WANG X Y, et al. Joining of yttria stabilised zirconia to Ti6Al4V alloy using novel CuO nanostructure reinforced Cu foam interlayer[J].Materials Letters, 2019, 253:105-108. [34] 王泽宇. 碳基网络复合中间层辅助钎焊C/C复合材料与Nb机理研究[D]. 哈尔滨:哈尔滨工业大学, 2020.WANG Z Y. Study on the brazing mechanism of carbon fiber reinforced carbon composite-niobium by using carbonaceous network interlayer[D]. Harbin:Harbin Institute of Technology, 2020(in Chinese). [35] SUN Z, ZHANG L X, ZHANG B, et al. A strategy to fabricate strength-ductility enhanced braze filler reinforced by 3-dimensional graphene sponge for joining C/C composites[J].Materials & Design, 2020, 189:108515. [36] SONG X R, LI H J, CASALEGNO V, et al. Microstructure and mechanical properties of C/C composite/Ti6Al4V joints with a Cu/TiCuZrNi composite brazing alloy[J].Ceramics International, 2016, 42(5):6347-6354. [37] QIN Y Q, FENG J C. Active brazing carbon/carbon composite to TC4 with Cu and Mo composite interlayers[J].Materials Science and Engineering:A, 2009, 525(1-2):181-185. [38] ZHANG L X, ZHANG B, SUN Z, et al. Brazing of ZrB2-SiC-C and GH99 with AgCuTi/SiC interpenetrating network structural composite as an interlayer[J].Ceramics International, 2020, 46(8):10224-10232. [39] ZHANG L X, SUN Z, CHANG Q, et al. Brazing SiO2f/SiO2 composite to Invar alloy using a novel TiO2 particle-modified composite braze filler[J].Ceramics International, 2019, 45(2):1698-1709. [40] SONG X G, CAO J, WANG Y F, et al. Effect of Si3N4-particles addition in Ag-Cu-Ti filler alloy on Si3N4/TiAl brazed joint[J].Materials Science and Engineering:A, 2011, 528(15):5135-5140. [41] ZHANG S S, YAN L C, GAO K W, et al. Finite element analysis of the effect of TiC or graphite modified composite fillers on the thermal residual stress of AMB ceramic substrates[J].Ceramics International, 2019, 45(15):19098-19104. [42] XIONG J T, LI J L, ZHANG F S, et al. Direct joining of 2D carbon/carbon composites to Ti-6Al-4V alloy with a rectangular wave interface[J].Materials Science and Engineering:A, 2008, 488(1-2):205-213. [43] SHEN Y X, LI Z L, HAO C Y, et al. A novel approach to brazing C/C composite to Ni-based superalloy using alumina interlayer[J].Journal of the European Ceramic Society, 2012, 32(8):1769-1774. [44] GUO W, GAO T F, CUI X F, et al. Interfacial reactions and zigzag groove strengthening of C/C composite and Rene N5 single crystal brazed joint[J].Ceramics International, 2015, 41(9):11605-11610. [45] ZHANG Y, ZOU G, LIU L, et al. Vacuum brazing of alumina to stainless steel using femtosecond laser patterned periodic surface structure[J].Materials Science and Engineering:A, 2016, 662:178-184. [46] YUAN R, DENG S J, CUI H C, et al. Interface characterization and mechanical properties of dual beam laser welding-brazing Al/steel dissimilar metals[J].Journal of Manufacturing Processes, 2019, 40:37-45. [47] LAUKANT H, WALLMANN C, KORTE M, et al. Flux-less joining technique of aluminium with zinc-coated steel sheets by a dual-spot-laser beam[J].Advanced Materials Research, 2005, 6-8:163-170. [48] 封小松. 镀锌钢板激光填丝钎焊工艺与热过程数值模拟[D]. 哈尔滨:哈尔滨工业大学, 2007.FENG X S. Study on laser brazing with filler wire for galvanized steel sheets and numerical simulation of the thermal process[D]. Harbin:Harbin Institute of Technology, 2007(in Chinese). [49] 马凯,于治水,张培磊,等. 激光作用下CuSi3在镀锌钢板表面的润湿行为研究[J].上海工程技术大学学报, 2013, 27(4):293-297.MA K, YU Z S, ZHANG P L, et al. Research on wetting behavior of Zn-coated steel with CuSi3 filler metal by laser beam[J].Journal of Shanghai University of Engineering Science, 2013, 27(4):293-297(in Chinese). [50] GATZEN M, RADEL T, THOMY C, et al. Wetting behavior of eutectic Al-Si droplets on zinc coated steel substrates[J].Journal of Materials Processing Technology, 2014, 214(1):123-131. [51] LI H Y, LI L Q, HUANG R R, et al. The effect of surface texturing on the laser-induced wetting behavior of AlSi5 alloy on Ti6Al4V alloy[J].Applied Surface Science, 2021, 566:150630. [52] WEN Z L, YU G Y, LI S Q, et al. Influence of Ni/Zn double coating on the steel on penetration welding-brazing by CMT arc-laser hybrid heat source[J].Optics & Laser Technology, 2021, 134:106602. [53] XIA H B, ZHAO X Y, TAN C W, et al. Effect of Si content on the interfacial reactions in laser welded-brazed Al/steel dissimilar butted joint[J].Journal of Materials Processing Technology, 2018, 258:9-21. [54] YANG J, LI Y L, ZHANG H, et al. Control of interfacial intermetallic compounds in Fe-Al joining by Zn addition[J].Materials Science and Engineering:A, 2015, 645:323-327. [55] MENG Y F, LU Y, LI Z Y, et al. Effects of beam oscillation on interface layer and mechanical properties of laser-arc hybrid lap welded Al/Mg dissimilar metals[J].Intermetallics, 2021, 133:107175. [56] WANG C M, CUI L Y, MI G Y, et al. The influence of heat input on microstructure and mechanical properties for dissimilar welding of galvanized steel to 6061 aluminum alloy in a zero-gap lap joint configuration[J].Journal of Alloys and Compounds, 2017, 726:556-566. [57] BORRISUTTHEKUL R, YACHI T, MIYASHITA Y, et al. Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy[J].Materials Science and Engineering:A, 2007, 467(1-2):108-113. [58] 夏鸿博. 铝/钢激光熔-钎焊的界面断裂行为及IMC层调控方法研究[D]. 哈尔滨:哈尔滨工业大学, 2019.XIA H B. Research on interfacial fractureing behaviors and adjusted methods of IMC layer for the laser welded-brazed Al/steel[D]. Harbin:Harbin Institute of Technology, 2019(in Chinese). [59] YANG J, SU J H, GAO C K, et al. Effect of heat input on interfacial microstructure, tensile and bending properties of dissimilar Al/steel lap joints by laser Welding-brazing[J].Optics & Laser Technology, 2021, 142:107218. [60] ZENG Z, OLIVEIRA J P, YANG M, et al. Functional fatigue behavior of NiTi-Cu dissimilar laser welds[J].Materials & Design, 2017, 114:282-287. [61] LAI W J, SUNG S J, PAN J, et al. Failure mode and fatigue behavior of dissimilar laser welds in lap-shear specimens of aluminum and copper sheets[J].SAE International Journal of Materials and Manufacturing, 2014, 7(3):706-710. [62] CORIGLIANO P, CRUPI V. Fatigue analysis of TI6AL4V/INCONEL 625 dissimilar welded joints[J].Ocean Engineering, 2021, 221:108582. [63] 张蒙. 激光-磁场作用于铜-钢异种材料焊接的工艺研究[D]. 武汉:华中科技大学, 2019.ZHANG M. Research on copper and steel dissimilar materials welding under co-effect of laser and magnetic field[D]. Wuhan:Huazhong University of Science and Technology, 2019(in Chinese). [64] 范聪. Hastelloy C-276/316L激光异质焊接力学及腐蚀性能研究[D]. 大连:大连理工大学, 2014.FAN C. Mechanical and corrosion properties of Hastelloy C-276/316L laser dissimilar welding[D]. Dalian:Dalian University of Technology, 2014(in Chinese). [65] LI L Q, TAN C W, CHEN Y B, et al. CO2 laser welding-brazing characteristics of dissimilar metals AZ31B Mg alloy to Zn coated dual phase steel with Mg based filler[J].Journal of Materials Processing Technology, 2013, 213(3):361-375. [66] LIU L M, QI X D. Effects of copper addition on microstructure and strength of the hybrid laser-TIG welded joints between magnesium alloy and mild steel[J].Journal of Materials Science, 2009, 44(21):5725-5731. [67] 许欣. 镁合金与钢激光熔钎焊界面化学反应冶金研究[D]. 镇江:江苏科技大学, 2018.XU X. Metallurgical study on interface chemical reaction of laser melting brazing of magnesium alloy with steel[D]. Zhenjiang:Jiangsu University of Science and Technology, 2018(in Chinese). [68] LIU L M, QI X D. Strengthening effect of nickel and copper interlayers on hybrid laser-TIG welded joints between magnesium alloy and mild steel[J].Materials & Design, 2010, 31(8):3960-3963. [69] LIU L M, QI X D, WU Z H. Microstructural characteristics of lap joint between magnesium alloy and mild steel with and without the addition of Sn element[J].Materials Letters, 2010, 64(1):89-92. [70] 刘晓庆. AZ31B/TC4异种金属TIG熔钎焊工艺及接头组织与性能研究[D]. 西安:西安科技大学, 2017.LIU X Q. Research on TIG welding-brazing technology of AZ31B/TC4 dissimilar metals and microstructure and properties of welded joints[D]. Xi'an:Xi'an University of Science and Technology, 2017(in Chinese). [71] TAN C W, CHEN Y B, LI L Q, et al. Comparative study of microstructure and mechanical properties of laser welded-brazed Mg/steel joints with four different coating surfaces[J].Science and Technology of Welding and Joining, 2013, 18(6):466-472. [72] 谭哲,刘金水,周惦武,等. 双相钢/镁合金添加Sn箔激光热传导焊及数值模拟[J].中国有色金属学报, 2016, 26(7):1427-1436.TAN Z, LIU J S, ZHOU D W, et al. Laser heat-conduction welding and numerical simulation of double phase steel/magnesium alloy with Sn foil[J].The Chinese Journal of Nonferrous Metals, 2016, 26(7):1427-1436(in Chinese). [73] ZHOU D W, LIU J S, TAN Z, et al. Effects of Sn-foil addition on the microstructure and mechanical properties of laser welding joint for dual phase steel and magnesium alloy[J].SN Applied Sciences, 2019, 1(7):1-12. [74] SONG G, LI T T, CHI J Y, et al. Bonding of immiscible Mg/steel by butt fusion welding[J].Scripta Materialia, 2018, 157:10-14. [75] 檀财旺,臧乘伟,张泽群,等. 镁/钢异种金属焊接的研究现状与展望[J].热加工工艺, 2021, 50(3):1-3.TAN C W, ZANG C W, ZHANG Z Q, et al. Research status and prospect of welding for magnesium/steel dissimilar alloys[J].Hot Working Technology, 2021, 50(3):1-6(in Chinese). [76] 张泽群,张凯平,檀财旺,等. 镁/钛异种合金焊接的研究现状与展望[J].焊接, 2017(11):21-27, 70.ZHANG Z Q, ZHANG K P, TAN C W, et al. Research status and development of welding for magnesium/titanium dissimilar alloys[J].Welding & Joining, 2017(11):21-27, 70(in Chinese). [77] 檀财旺. 镁/钢激光熔钎焊接特性及界面合金调控技术研究[D]. 哈尔滨:哈尔滨工业大学, 2014.TAN C W. Research on laser welding-brazing characteristics of magnesium/steel and its interface control with alloying elements[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese). [78] 宋刚,迟佳玉,于景威,等. 镁/钢激光-电弧复合焊接接头的腐蚀行为[J].材料导报, 2018, 32(16):2773-2777.SONG G, CHI J Y, YU J W, et al. Corrosion behavior of Mg-steel laser-TIG hybrid welding joint[J].Materials Review, 2018, 32(16):2273-2777(in Chinese). [79] KAWAHITO Y, NIWA Y, KATAYAMA S. Laser direct joining between stainless steel and polyethylene terephthalate plastic and reliability evaluation of joints[J].Welding International, 2014, 28(2):107-113. [80] ZHANG Z, SHAN J G, TAN X H, et al. Improvement of the laser joining of CFRP and aluminum via laser pre-treatment[J].The International Journal of Advanced Manufacturing Technology, 2017, 90(9-12):3465-3472. [81] RODRÍGUEZ-VIDAL E, SANZ C, LAMBARRI J, et al. Experimental investigation into metal micro-patterning by laser on polymer-metal hybrid joining[J].Optics & Laser Technology, 2018, 104:73-82. [82] JUNG D J, CHEON J, NA S J. Effect of surface pre-oxidation on laser assisted joining of acrylonitrile butadiene styrene (ABS) and zinc-coated steel[J].Materials & Design, 2016, 99:1-9. [83] ZHANG Z, SHAN J G, TAN X H, et al. Effect of anodizing pretreatment on laser joining CFRP to aluminum alloy A6061[J].International Journal of Adhesion and Adhesives, 2016, 70:142-151. [84] ARAI S, KAWAHITO Y, KATAYAMA S. Effect of surface modification on laser direct joining of cyclic olefin polymer and stainless steel[J].Materials & Design, 2014, 59:448-453. [85] GAO M, LIAO W, CHEN C. Improving the interfacial bonding strength of dissimilar PA66 plastic and 304 stainless steel by oscillating laser beam[J].Optics & Laser Technology, 2021, 138:106869. [86] HAO K D, LIAO W, ZHANG T D, et al. Interface formation and bonding mechanisms of laser transmission welded composite structure of PET on austenitic steel via beam oscillation[J].Composite Structures, 2020, 235:111752. [87] JIAO J K, ZOU Q, YE Y Y, et al. Carbon fiber reinforced thermoplastic composites and TC4 alloy laser assisted joining with the metal surface laser plastic-covered method[J].Composites Part B:Engineering, 2021, 213:108738. [88] TAN C W, SU J H, FENG Z W, et al. Laser joining of CFRTP to titanium alloy via laser surface texturing[J].Chinese Journal of Aeronautics, 2021, 34(5):103-114. [89] TAN C W, SU J H, ZHU B H, et al. Effect of scanning speed on laser joining of carbon fiber reinforced PEEK to titanium alloy[J].Optics & Laser Technology, 2020, 129:106273. [90] SU J H, TAN C W, WU Z L, et al. Influence of defocus distance on laser joining of CFRP to titanium alloy[J].Optics & Laser Technology, 2020, 124:106006. [91] FENG Z W, MA G L, SU J H, et al. Influence of process parameters on the joint characteristics during laser joining of aluminium alloy and CFRTP[J].Journal of Manufacturing Processes, 2021, 64:1493-1506. [92] 王之康,高永华,徐宾. 真空电子束焊接设备及工艺[M].北京:原子能出版社, 1990.WANG Z H, GAO Y H, XU B. equipment and process of vacuum electron beam welding[M]. Beijing:Publishing House of the IAEA,1990(in Chinese). [93] 李少青,张毓新,王学东,等. 基于电子束能量分布控制的异种金属的焊接[J].机械工程材料, 2005, 29(9):35-37, 44.LI S Q, ZHANG Y X, WANG X D, et al. Welding of dissimilar metals based on electron beam energy distribution control[J].Materials for Mechanical Engineering, 2005, 29(9):35-37, 44(in Chinese). [94] 陈东亮,杜乐一,王英,等. 难熔金属及其合金的电子束焊接现状[J].兵器材料科学与工程, 2016, 39(6):124-127.CHEN D L, DU L Y, WANG Y, et al. Current status of electron beam welding of refractory metals and their alloys[J].Ordnance Material Science and Engineering, 2016, 39(6):124-127(in Chinese). [95] 陈国庆,张秉刚,吴双辉,等. TC4/Ta-W合金异种金属电子束焊接[J].焊接学报, 2011, 32(8):21-24, 114.CHEN G Q, ZHANG B G, WU S H, et al. Electron beam welding of TC4/Ta-W alloys dissimilar metal[J].Transactions of the China Welding Institution, 2011, 32(8):21-24, 114(in Chinese). [96] 陈国庆,树西,柳峻鹏,等. 真空电子束焊接技术应用研究现状[J].精密成形工程, 2018, 10(1):31-39.CHEN G Q, SHU X, LIU J P et al. Development Status of Applications of Vacuum Electron Beam Welding Technology[J].Journal of Netshape Forming Engineering, 2018, 10(1):31-39(in Chinese). [97] GUO S, ZHOU Q, KONG J, et al. Effect of beam offset on the characteristics of copper/304 stainless steel electron beam welding[J].Vacuum, 2016, 128:205-212. [98] 张秉刚,冯吉才,吴林,等. 铬青铜与双相不锈钢电子束熔钎焊接头形成机制[J].焊接学报,2005, 26(2):17-20, 24.ZHANG B G, FENG J C, WU L, et al. Formation mechanism of electron beam melt-brazed joint of chromium-bronze and duplex phase stainless steel[J].Transactions of the China Welding Institution, 2005, 26(2):17-20, 24(in Chinese). [99] ZHANG B G, ZHAO J, LI X P, et al. Effects of filler wire on residual stress in electron beam welded QCr0.8 copper alloy to 304 stainless steel joints[J].Applied Thermal Engineering, 2015, 80:261-268. [100] 张秉刚,何景山,曾如川,等. LF2铝合金与Q235钢加入中间Cu层电子束焊接接头组织及形成机理[J].焊接学报, 2007, 28(6):37-40, 115.ZHANG B G, HE J S, ZENG R C, et al. Microstructures and formation of EBW joint of aluminum alloy LF2 to steel Q235 with transition metal Cu[J].Transactions of the China Welding Institution, 2007, 28(6):37-40, 115(in Chinese). [101] 倪家强,张秉刚,张春光. 铝/AlSi7/钢电子束焊接接头组织与性能研究[J].焊接, 2012(12):35-37, 46, 74.NI J Q, ZHANG B G, ZHANG C G. Microstructure and mechanical properties of aluminum alloy/AlSi7/stainless steel electron beam welded joints[J].Welding & Joining, 2012(12):35-37, 46, 74(in Chinese). [102] 王廷,张秉刚,冯吉才,等. 钢侧偏束电子束焊接纯铝/Q235异种金属接头试验[J].焊接学报, 2014, 35(6):69-72, 116.WANG T, ZHANG B G, FENG J C, et al. Experimental study of electron beam welded pure aluminum to Q235 steel joint with beam deflection[J].Transactions of the China Welding Institution, 2014, 35(6):69-72, 116(in Chinese). [103] WANG T, ZHANG B G, WANG H Q, et al. Microstructures and mechanical properties of electron beam-welded titanium-steel joints with vanadium, nickel, copper and silver filler metals[J].Journal of Materials Engineering and Performance, 2014, 23(4):1498-1504. [104] WANG T, ZHANG B G, CHEN G Q, et al. High strength electron beam welded titanium-stainless steel joint with V/Cu based composite filler metals[J].Vacuum, 2013, 94:41-47. [105] LIU W, ZHANG B G, HE J S, et al. Microstructure and performance of dissimilar joint QCr0.8/TC4 welded by uncentered electron beam[J].Rare Metals, 2007, 26:344-348. [106] GUO S, ZHOU Q, PENG Y, et al. Study on strengthening mechanism of Ti/Cu electron beam welding[J].Materials & Design, 2017, 121:51-60. [107] HAN K, WANG T, TANG Q, et al. Effect of Cu66V34 filler thickness on the microstructure and properties of titanium/copper joint by electron beam welding[J].Journal of Materials Processing Technology, 2019, 267:103-113. [108] KIM J, KAWAMURA Y. Electron beam welding of Zr-based BMG/Ni joints:Effect of beam irradiation position on mechanical and microstructural properties[J].Journal of Materials Processing Technology, 2008, 207(1-3):112-117. [109] KAWAMURA Y, KAGAO S, OHNO Y. Electron beam welding of Zr-based bulk metallic glass to crystalline Zr metal[J].Materials Transactions, 2001, 42(12):2649-2651. [110] KIM J, KAWAMURA Y. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal[J].Scripta Materialia, 2007, 56(8):709-712. [111] MING H L, ZHANG Z M, WANG J Q, et al. Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW[J].Materials Characterization, 2017, 123:233-243. [112] SARIKKA T, AHONEN M, MOUGINOT R, et al. Effect of mechanical mismatch on fracture mechanical behavior of SA 508-Alloy 52 narrow gap dissimilar metal weld[J].International Journal of Pressure Vessels and Piping, 2017, 157:30-42. [113] WANG P, HU S S, SHEN J Q, et al. Effects of electrode positive/negative ratio on microstructure and mechanical properties of Mg/Al dissimilar variable polarity cold metal transfer welded joints[J].Materials Science and Engineering:A, 2016, 652:127-135. [114] CAO R, YU G, CHEN J H, et al. Cold metal transfer joining aluminum alloys-to-galvanized mild steel[J].Journal of Materials Processing Technology, 2013, 213(10):1753-1763. [115] XU P Z, HUA X M, CHEN N N, et al. Effect of the microstructure of IMCs and zinc accumulation on the mechanical properties of aluminum/galvanized steel joints in the VP-CMT process[J].Journal of Manufacturing Processes, 2020, 58:894-904. [116] MEZRAG B, DESCHAUX-BEAUME F, SABATIER L, et al. Microstructure and properties of steel-aluminum cold metal transfer joints[J].Journal of Materials Processing Technology, 2020, 277:116414. [117] 曹睿,朱海霞,王清,等. 镁/钢异种金属CMT对接熔钎焊连接机理[J].焊接学报, 2016, 37(5):37-40, 130.CAO R, ZHU H X, WANG Q, et al. Joining mechanisms of Mg-steel butt welded joints by cold metal transfer method[J].Transactions of the China Welding Institution, 2016, 37(5):37-40, 130(in Chinese). [118] KUMAR T, KIRAN D V, CHEON J, et al. Probing the influence of cold wire gas tungsten arc welding current waveforms on the aluminum-steel joining[J].Journal of Manufacturing Processes, 2020, 59:378-388. [119] SU Y C, HUA X M, WU Y X. Quantitative characterization of porosity in Fe-Al dissimilar materials lap joint made by gas metal arc welding with different current modes[J].Journal of Materials Processing Technology, 2014, 214(1):81-86. [120] 石玗,周相龙,朱明,等. 铝/铜异种金属脉冲旁路耦合电弧MIG熔钎焊接头的组织与力学性能[J].中国有色金属学报, 2017, 27(9):1816-1822.SHI Y, ZHOU X L, ZHU M, et al. Microstructure and mechanical properties of Al/Cu dissimilar metals pulsed DE-MIG welding-brazing joint[J].The Chinese Journal of Nonferrous Metals, 2017, 27(9):1816-1822(in Chinese). [121] HUANG J K, HE X Y, GUO Y N, et al. Joining of aluminum alloys to galvanized mild steel by the pulsed DE-GMAW with the alternation of droplet transfer[J].Journal of Manufacturing Processes, 2017, 25:16-25. [122] MIAO Y G, MA Z W, YANG X S, et al. Experimental study on microstructure and mechanical properties of AA6061/Ti-6Al-4V joints made by bypass-current MIG welding-brazing[J].Journal of Materials Processing Technology, 2018, 260:104-111. [123] 秦国梁,武传松. 铝合金/钢异种材料熔钎焊接工艺及其研究现状[J].机械工程学报, 2016, 52(24):24-35.QIN G L, WU C S. State-of-art of brazing-fusion welding processes of dissimilar metals between aluminum alloy and steel[J].Journal of Mechanical Engineering, 2016, 52(24):24-35(in Chinese). [124] DONG H G, HU W J, DUAN Y P, et al. Dissimilar metal joining of aluminum alloy to galvanized steel with Al-Si, Al-Cu, Al-Si-Cu and Zn-Al filler wires[J].Journal of Materials Processing Technology, 2012, 212(2):458-464. [125] HE H, LIN S B, YANG C L, et al. Combination effects of nocolok flux with Ni powder on properties and microstructures of aluminum-stainless steel TIG welding-brazing joint[J].Journal of Materials Engineering and Performance, 2013, 22(11):3315-3323. [126] LIU L M, LIU F. Effect of Ce on microstructure and properties of Mg/Al butt joint welded by gas tungsten arc with Zn-30Al-xCe filler metal[J].Science and Technology of Welding and Joining, 2013, 18(5):414-420. [127] JIN P, LIU Y B, SUN Q J, et al. Wetting mechanism and microstructure evolution of TC4/304 stainless steel joined by CMT with an assisted hybrid magnetic field[J].Journal of Alloys and Compounds, 2020, 819:152951. [128] SUN Q J, LI J Z, LIU Y B, et al. Arc characteristics and droplet transfer process in CMT welding with a magnetic field[J].Journal of Manufacturing Processes, 2018, 32:48-56. [129] MOU G, HUA X M, WANG M, et al. Effect of axial magnetic field on cold metal transfer arc-brazing of Ti6Al4V to 304L steel[J].Journal of Materials Processing Technology, 2020, 275:116322. [130] XU C, SHENG G, WANG H, et al. Reinforcement of Mg/Ti joints using ultrasonic assisted tungsten inert gas welding-brazing technology[J].Science and Technology of Welding and Joining, 2014, 19(8):703-707. [131] WU K L, YUAN X J, LI T, et al. Effect of ultrasonic vibration on TIG welding-brazing joining of aluminum alloy to steel[J].Journal of Materials Processing Technology, 2019, 266:230-238. [132] ZHENG Y, HUANG J H, CHENG Z, et al. Combined effects of MIG and TIG arcs on weld appearance and interface properties in Al/steel double-sided butt welding-brazing[J].Journal of Materials Processing Technology, 2017, 250:25-34. [133] MA H, QIN G L, WANG L Y, et al. Effects of preheat treatment on microstructure evolution and properties of brazed-fusion welded joint of aluminum alloy to steel[J].Materials & Design, 2016, 90:330-339. [134] MISHRA R S, MA Z Y. Friction stir welding and processing[J].Materials Science and Engineering:R:Reports, 2005, 50(1-2):1-78. [135] MORISADA Y, IMAIZUMI T, FUJII H. Clarification of material flow and defect formation during friction stir welding[J].Science and Technology of Welding and Joining, 2015, 20(2):130-137. [136] MORISADA Y, IMAIZUMI T, FUJII H. Determination of strain rate in Friction Stir Welding by three-dimensional visualization of material flow using X-ray radiography[J].Scripta Materialia, 2015, 106:57-60. [137] LI J Q, LIU H J. Characteristics of the reverse dual-rotation friction stir welding conducted on 2219-T6 aluminum alloy[J].Materials & Design, 2013, 45:148-154. [138] LI J Q, LIU H J. Effects of tool rotation speed on microstructures and mechanical properties of AA2219-T6 welded by the external non-rotational shoulder assisted friction stir welding[J].Materials & Design, 2013, 43:299-306. [139] LIU H J, ZHANG H J, YU L. Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy[J].Materials & Design, 2011, 32(3):1548-1553. [140] LIU H J, HU Y Y, WANG H, et al. Stationary shoulder supporting and tilting pin penetrating friction stir welding[J].Journal of Materials Processing Technology, 2018, 255:596-604. [141] CHEN J, UEJI R, FUJII H. Double-sided friction-stir welding of magnesium alloy with concave-convex tools for texture control[J].Materials & Design, 2015, 76:181-189. [142] KUMAR S, WU C S, PADHY G K, et al. Application of ultrasonic vibrations in welding and metal processing:A status review[J].Journal of Manufacturing Processes, 2017, 26:295-322. [143] HU Y Y, LIU H J, FUJII H. Improving the mechanical properties of 2219-T6 aluminum alloy joints by ultrasonic vibrations during friction stir welding[J].Journal of Materials Processing Technology, 2019, 271:75-84. [144] FERNANDEZ G J, MURR L E. Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite[J].Materials Characterization, 2004, 52(1):65-75. [145] CUI L, FUJII H, TSUJI N, et al. Friction stir welding of a high carbon steel[J].Scripta Materialia, 2007, 56(7):637-640. [146] MIRONOV S, SATO Y S, KOKAWA H. Friction-stir welding and processing of Ti-6Al-4V titanium alloy:A review[J].Journal of Materials Science & Technology, 2018, 34(1):58-72. [147] ZHU Z G, SUN Y F, GOH M H, et al. Friction stir welding of a CoCrFeNiAl0.3 high entropy alloy[J].Materials Letters, 2017, 205:142-144. [148] PARK S, NAM H, PARK J, et al. Superior-tensile property of CoCrFeMnNi alloys achieved using friction-stir welding for cryogenic applications[J].Materials Science and Engineering:A, 2020, 788:139547. [149] WANG T H, SHUKLA S, KOMARASAMY M, et al. Towards heterogeneous AlxCoCrFeNi high entropy alloy via friction stir processing[J].Materials Letters, 2019, 236:472-475. [150] 陈玉华,谢吉林,戈军委,等. 铝/镁异种金属搅拌摩擦焊研究现状及发展趋势[J].精密成形工程, 2015, 7(5):25-33.CHEN Y H, XIE J L, GE J W, et al. Study status and development trends of friction stir welding of Al/Mg dissimilar metals[J].Journal of Netshape Forming Engineering, 2015, 7(5):25-33(in Chinese). [151] XU Y, KE L M, MAO Y Q, et al. Formation investigation of intermetallic compounds of thick plate Al/Mg alloys joint by friction stir welding[J].Materials, 2019, 12(17):2661. [152] FU B L, QIN G L, LI F, et al. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy[J].Journal of Materials Processing Technology, 2015, 218:38-47. [153] MOFID M A, ABDOLLAH-ZADEH A, MALEK GHAINI F. The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy[J].Materials & Design, 2012, 36:161-167. [154] MOFID M A, ABDOLLAH-ZADEH A, GVR C H. Investigating the formation of intermetallic compounds during friction stir welding of magnesium alloy to aluminum alloy in air and under liquid nitrogen[J].The International Journal of Advanced Manufacturing Technology, 2014, 71(5-8):1493-1499. [155] ABDOLLAHZADEH A, SHOKUHFAR A, CABRERA J M, et al. The effect of changing chemical composition on dissimilar Mg/Al friction stir welded butt joints using zinc interlayer[J].Journal of Manufacturing Processes, 2018, 34:18-30. [156] 黄永宪,黄体方,万龙,等. 铝/钢异种材料搅拌摩擦焊研究进展[J].精密成形工程, 2018, 10(1):23-30.HUANG Y X, HUANG T F, WAN L, et al. Research progress of dissimilar friction stri welding between aluminium and steel[J].Journal of Netshape Forming Engineering, 2018, 10(1):23-30(in Chinese). |
[1] | Huiliang GAO, Hongsheng CHEN, Wenxian WANG, Fei CHAI, Zhuoran WANG, Guoting LIU, Pengfei GONG. Vacuum electron beam welding behavior of Al/Cu bimetallic composite plate [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 428288-428288. |
[2] | WANG Miao, WANG Wei, YANG Yunlong, TAN Caiwang, WANG Gang. Effect of brazing time on microstructure and properties of SiC ceramic brazed with CoFeNiCrCu [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525057-525057. |
[3] | CHEN Bo, MENG Zheng, MA Chengyuan, XI Xin, WANG Xinxin, TAN Caiwang, SONG Xiaoguo. Welding properties and molten pool flow behavior of TC4 titanium alloy by oscillating galvanometer laser [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525223-525223. |
[4] | YANG Siyuan, WANG Ying, WANG Jilai, YANG Zhenwen, WANG Dongpo. Interfacial microstructure and mechanical properties of vacuum-brazed Al2O3 ceramic and GH3536 joint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525806-525806. |
[5] | ZHAO Kehan, LIU Duo, ZHU Haitao, CHEN Bin, HU Shengpeng, SONG Xiaoguo. Effect of brazing temperature on microstructure and mechanical property of C/C/AgCuTi+Cf/TC4 joint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525007-525007. |
[6] | LIU Tianyuan, ZHENG Hangbin, YANG Changqi, BAO Jinsong, WANG Junliang, GU Jun. Explainable deep learning method for laser welding defect detection [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 524961-524961. |
[7] | LU Chuanyang, CHEN Gangqiang, TANG Xiatao, HE Yanming, YANG Jianguo, ZHENG Wenjian, MA Yinghe, LI Huaxin, GAO Zengliang. Microstructure and mechanical properties of Hastelloy N superalloy joints brazed using BNi71CrSi filler alloy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625040-625040. |
[8] | LIU Xiaochao, ZHEN Yunqian, HE Xinyuan, CHEN Haiyan, SHEN Zhikang. Vortex- friction stir welding process based on internal friction between identical materials [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625012-625012. |
[9] | LI Haoyue, LIU Yongjiang, ZHAO Zhenxing, LI Xueran, JIANG Junjun, WU Laijun, TAN Caiwang, SONG Xiaoguo. Interface microstructure and formation mechanism of oscillating laser brazed joints for aerial sensing elements [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625020-625020. |
[10] | CAI Xiaoqiang, WANG Dongpo, WANG Ying, YANG Zhenwen. Interfacial microstructure and mechanical properties of TiB2-TiC-SiC ceramics joints fabricated by contact reactive brazing technique [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625006-625006. |
[11] | ZOU Qi, YE Yiyun, JIAO Junke, WU Zhisheng, XU Zifa, ZHANG Wenwu. Performance analysis of carbon fiber reinforced thermalsetting composite-titanium alloy laser joint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625037-625037. |
[12] | JIANG Chunyang, WU Lihui, CHANG Yunlong, XUE Peng, NI Dingrui, XIAO Bolv, MA Zongyi. Hybrid welding of riveting/friction stir lap joining of aluminum alloy to resin-based composite [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625190-625190. |
[13] | WANG Lianqing, HU Ya'nan, CHE Zhigang, WU Shengchuan. Fatigue performance of laser shock processed fusion welded 7075 Al alloy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524320-524320. |
[14] | HU Shengpeng, LI Wenqiang, FU Wei, SONG Xiaoguo, LONG Weimin, CAO Jian. Interfacial microstructure and mechanical properties of high Nb containing TiAl alloy and GH3536 superalloy brazed using amorphous BNi-2 filler [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 423846-423846. |
[15] | MAO Yuqing, JIANG Zhouming, LIU Fencheng, KE Liming. Microstructure evolution rule along weld thickness direction of FSW 7075-T6 aluminum alloy thick plate [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(5): 422640-422640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341