[1] 吴钦, 郭一梦, 刘韵晴, 等. 非定常空化流动及其诱导振动特性研究综述[J]. 空气动力学学报, 2020, 38(4):746-760. WU Q, GUO Y M, LIU Y Q, et al. Review on the cavitating flow-induced vibrations[J]. Acta Aerodynamica Sinica, 2020, 38(4):746-760(in Chinese). [2] WANG C M, XIANG L, TAN Y H, et al. Experimental investigation of thermal effect on cavitation characteristics in a liquid rocket engine turbopump inducer[J]. Chinese Journal of Aeronautics, 2021, 34(8):48-57. [3] 李锋, 吕付国, 罗卫东, 等. 超声速气流中液体横向射流的破碎特性[J]. 北京航空航天大学学报, 2015, 41(12):2356-2362. LI F, LYU F G, LUO W D, et al. Breakup characteristics of liquid jet in supersonic cross flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12):2356-2362(in Chinese). [4] ZHAO X, XIA Z X, MA L K, et al. Research progress on solid-fueled Scramjet[J]. Chinese Journal of Aeronautics, (2021-06-24)[2021-08-16]. https://doi.org/10.1016/j.cja.2021.06.002. [5] 杨军, 史展, 邢更彦. 体外冲击波疗法治疗肌肉骨骼系统疾病研究的相关进展[J]. 中国医学前沿杂志(电子版), 2014, 6(1):34-39. YANG J, SHI Z, XING G Y. The research progression on musculoskeletal disorders of extracorporeal shock wave therapy[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2014, 6(1):34-39(in Chinese). [6] BRENNEN C E. Cavitation and bubble dynamics[M]. Oxford:Oxford University Press, 1995:15-43. [7] PLESSET M S, PROSPERETTI A. Bubble dynamics and cavitation[J]. Annual Review of Fluid Mechanics, 1977, 9(1):145-185. [8] SUSLICK K S, FLANNIGAN D J. Inside a collapsing bubble:Sonoluminescence and the conditions during cavitation[J]. Annual Review of Physical Chemistry, 2008, 59:659-683. [9] OHL S W, KLASEBOER E, KHOO B C. Bubbles with shock waves and ultrasound:A review[J]. Interface Focus, 2015, 5(5):20150019. [10] BRENNEN C E. Fission of collapsing cavitation bubbles[J]. Journal of Fluid Mechanics, 2002, 472:153-166. [11] RAYLEIGH L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200):94-98. [12] PLESSET M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16(3):277-282. [13] PLESSET M S, MITCHELL T P. On the stability of the spherical shape of a vapor cavity in a liquid[J]. Quarterly of Applied Mathematics, 1956, 13(4):419-430. [14] PLESSET M S, CHAPMAN R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1971, 47(2):283-290. [15] RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions[J]. Annual Review of Fluid Mechanics, 2011, 43(1):117-140. [16] BLAKE J R, GIBSON D C. Growth and collapse of a vapour cavity near a free surface[J]. Journal of Fluid Mechanics, 1981, 111:123-140. [17] TOMITA Y, ROBINSON P B, TONG R P, et al. Growth and collapse of cavitation bubbles near a curved rigid boundary[J]. Journal of Fluid Mechanics, 2002, 466:259-283. [18] TOMITA Y, SHIMA A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse[J]. Journal of Fluid Mechanics, 1986, 169:535-564. [19] DEAR J P, FIELD J E, WALTON A J. Gas compression and jet formation in cavities collapsed by a shock wave[J]. Nature, 1988, 332(6164):505-508. [20] BOURNE N K, FIELD J E. Shock-induced collapse of single cavities in liquids[J]. Journal of Fluid Mechanics, 1992, 244:225-240. [21] BALL G J, HOWELL B P, LEIGHTON T G, et al. Shock-induced collapse of a cylindrical air cavity in water:A Free-Lagrange simulation[J]. Shock Waves, 2000, 10(4):265-276. [22] HAWKER N A, VENTIKOS Y. Interaction of a strong shockwave with a gas bubble in a liquid medium:A numerical study[J]. Journal of Fluid Mechanics, 2012, 701:59-97. [23] BETNEY M R, TULLY B, HAWKER N A, et al. Computational modelling of the interaction of shock waves with multiple gas-filled bubbles in a liquid[J]. Physics of Fluids, 2015, 27(3):036101. [24] REISMAN G E, WANG Y C, BRENNEN C E. Observations of shock waves in cloud cavitation[J]. Journal of Fluid Mechanics, 1998, 355:255-283. [25] METZNER G, DOHNALEK C, AIGNER E. High-energy Extracorporeal Shock-Wave Therapy (ESWT) for the treatment of chronic plantar fasciitis[J]. Foot & Ankle International, 2010, 31(9):790-796. [26] JOHNSEN E, COLONIUS T. Shock-induced collapse of a gas bubble in shockwave lithotripsy[J]. The Journal of the Acoustical Society of America, 2008, 124(4):2011-2020. [27] CHURCH C C. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter[J]. The Journal of the Acoustical Society of America, 1989, 86(1):215-227. [28] WU W X, XIANG G M, WANG B. On high-speed impingement of cylindrical droplets upon solid wall considering cavitation effects[J]. Journal of Fluid Mechanics, 2018, 857:851-877. [29] SAUREL R, PETITPAS F, ABGRALL R. Modelling phase transition in metastable liquids:Application to cavitating and flashing flows[J]. Journal of Fluid Mechanics, 2008, 607:313-350. [30] WU W X, WANG B, XIANG G M. Impingement of high-speed cylindrical droplets embedded with an air/vapour cavity on a rigid wall:numerical analysis[J]. Journal of Fluid Mechanics, 2019, 864:1058-1087. [31] WANG B, XIANG G M, HU X Y. An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows[J]. International Journal of Multiphase Flow, 2018, 104:20-31. [32] CORALIC V, COLONIUS T. Finite-volume WENO scheme for viscous compressible multicomponent flows[J]. Journal of Computational Physics, 2014, 274:95-121. [33] LIN C D, LUO K H, XU A G, et al. Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture with nonequilibrium effects[J]. Physical Review E, 2021, 103(1):013305. [34] LIN C D, LUO K H. Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method[J]. Combustion and Flame, 2018, 198:356-362. [35] LIN C D, XU A G, ZHANG G C, et al. Polar-coordinate lattice Boltzmann modeling of compressible flows[J]. Physical Review E, 2014, 89:013307. |