[1] GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98:106-123. [2] MOU H L, XIE J, FENG Z Y. Research status and future development of crashworthiness of civil aircraft fuselage structures:an overview[J]. Progress in Aerospace Sciences, 2020, 119:100644. [3] 牟浩蕾, 解江, 冯振宇. 民机机身结构适坠性研究[J]. 交通运输工程学报, 2020, 20(3):17-39. MOU H L, XIE J, FENG Z Y. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3):17-39(in Chinese). [4] RICCIO A, SAPUTO S, SELLITTO A, et al. An insight on the crashworthiness behavior of a full-scale composite fuselage section at different impact angles[J]. Aerospace, 2019, 6(6):72. [5] DELETOMBE E, DELSART D. Highly nonlinear and transient structural dynamics:a review about crashworthiness of composite aeronautical structures[J]. Aeroelasticity and Structural dynamics, 2018, 14(11):1-11. [6] ADAMS A, LANKARANI H M. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness[J]. International Journal of Crashworthiness, 2003, 8(4):401-413. [7] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9):2130-2140. LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2130-2140(in Chinese). [8] TAY Y Y, BHONGE P S, LANKARANI H M. Crash simulations of aircraft fuselage section in water impact and comparison with solid surface impact[J]. International Journal of Crashworthiness, 2015, 20(5):464-482. [9] 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响[J]. 航空学报, 2010, 31(2):271-276. REN Y R, XIANG J W, LUO Z P, et al. Effect of cabin-floor oblique strut on crashworthiness of typical civil aircraft fuselage section[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):271-276(in Chinese). [10] 郑建强, 向锦武, 罗漳平, 等. 民机机身下部结构耐撞性优化设计[J]. 航空学报, 2012, 33(4):640-649. ZHENG J Q, XIANG J W, LUO Z P, et al. Crashworthiness optimization of civil aircraft subfloor structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):640-649(in Chinese). [11] 何欢, 陈国平, 张家滨. 带油箱结构的机身框段坠撞仿真分析[J]. 航空学报, 2008, 29(3):627-633. HE H, CHEN G P, ZHANG J B. Crash simulation of fuselage section with fuel tank[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):627-633(in Chinese). [12] FASANELLA E L, WIDMAYER E, ROBINSON M P. Structural analysis of the controlled impact demonstration of a jet transport airplane[J]. Journal of Aircraft, 1987, 24(4):274-280. [13] JACKSON K, FASANELLA E L. Crash simulation of vertical drop tests of two boeing 737 fuselage sections DOT/FAA/AR-02/62[R]. 2002 [14] JACKSON K, LITTELL J, ANNETT M, et al. Finite element simulations of two vertical drop tests of F-28 fuselage sections:NASA/TM-2018-219807[R] Washington D.C.:NASA, 2018. [15] HASHEMI SMR, WALTON AC. A systematic approach to aircraft crashworthiness and impact surface material models[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2000, 214(5):265-280. [16] LIU X C, GUO J, BAI C Y, et al. Drop test and crash simulation of a civil airplane fuselage section[J]. Chinese Journal of Aeronautics, 2015, 28(2):447-456. [17] KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections[C]//SAE Technical Paper Series. Warrendale:SAE International, 2003:1-12. [18] KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Vertical drop test of a transport fuselage section[C]//SAE Technical Paper Series. Warrendale:SAE International 2002:1-10. [19] ARNAUDEAU F, MAHE M, DELETOMBE E, et al. Crashworthiness of aircraft composites structures (invited talk)[C]//Proceedings of ASME 2002 International Mechanical Engineering Congress and Exposition, 2008:31-40. [20] DELSART D, PORTEMONT G, WAIMER M. Crash testing of a CFRP commercial aircraft sub-cargo fuselage section[J]. Procedia Structural Integrity, 2016, 2:2198-2205. [21] JACKSON K E. Analytical crash simulation of three composite fuselage concepts and experimental correlation[J]. Journal of the American Helicopter Society, 1997, 42(2):116-125. [22] KAREN E J, EDWIN L. Crashworthy evaluation of a 1/5-scale model composite fuselage concept:NASA/TM1999-209132[R]. Washington D.C.:NASA, 1999. [23] 郑建强, 向锦武, 罗漳平, 等. 民机机身耐撞性设计的波纹板布局[J]. 航空学报, 2010, 31(7):1396-1402. ZHENG J Q, XIANG J W, LUO Z P, et al. Crashworthiness layout of civil aircraft using waved-plate for energy absorption[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1396-1402(in Chinese). [24] WIGGENRAAD J F M, SANTORO D, LEPAGE F, et al. Development of a crashworthy composite fuselage concept for a commuter aircraft, NLR-TP-2001-108[R]. Washington D.C.:National Aerospace Laboratory, 2001:1-13. [25] WAIMER M, FESER T, SCHATROW P, et al. Crash concepts for CFRP transport aircraft-comparison of the traditional bend frame concept versus the developments in a tension absorbers concept[J]. International Journal of Crashworthiness, 2018, 23(2):193-218. [26] CAPRIO F D, IGNARRA M, MARULO F, et al. Design of composite stanchions for the cargo subfloor structure of a civil aircraft[J]. Procedia Engineering, 2016, 167:88-96. [27] 牟浩蕾, 赵一帆, 刘义, 等. 航空沉头铆钉动态加载试验及失效模式研究[J]. 航空科学技术, 2019, 30(4):69-78. MOU H L, ZHAO Y F, LIU Y, et al. Dynamic loading failure experiment and failure mode analysis of aeronautic countersunk rivets[J]. Aeronautical Science & Technology, 2019, 30(4):69-78(in Chinese). [28] 冯振宇, 李恒晖, 刘义, 等. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12):12088-12093. FENG Z Y, LI H H, LIU Y, et al. Comparison of constitutive and failure models of 7075-T7351 alloy at intermediate and low strain rates[J]. Materials Reports, 2020, 34(12):12088-12093(in Chinese). [29] 冯振宇, 解江, 李恒晖, 等. 大飞机货舱地板下部结构有限元建模与适坠性分析[J]. 航空学报, 2019, 40(2):522394. FENG Z Y, XIE J, LI H H, et al. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):522394(in Chinese). [30] MOU H L, XIE J, LIU Y, et al. Impact test and numerical simulation of typical sub-cargo fuselage section of civil aircraft[J]. Aerospace Science and Technology, 2020, 107:106305. [31] 冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性[J]. 航空学报, 2019, 40(9):222907. FENG Z Y, CHENG K, ZHAO Y F, et al. Energy-absorbing characteristics of a typical sub-cargo fuselage section of a transport category aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):222907(in Chinese). |