[1] Boeing Commercial Airplanes. Statistical summary of commercial jet airplane accidents[R]. Seattle:Boeing Commercial Airplanes, 2015. [2] MOHAGHEGH Z, KAZEMI R, MOSLEH A. Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems:A hybrid technique formalization[J]. Reliability Engineering & System Safety, 2009, 94(5):1000-1018. [3] BROOKER P. Experts, Bayesian belief networks, rare events and aviation risk estimates[J]. Safety Science, 2011, 49(8-9):1142-1155. [4] DE MENDONÇA C B, DA SILVA E T, CURVO M, et al. Model-based flight testing[J]. Journal of Aircraft, 2013, 50(1):176-186. [5] BLUM D, THIPPHAVONG D, RENTAS T, et al. Safety analysis of the advanced airspace concept using Monte Carlo simulation[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2010. [6] 雷桂媛. 关于蒙特卡罗及拟蒙特卡罗方法的若干研究[D]. 杭州:浙江大学, 2003. LEI G Y. Several researches on Monte Carlo and quasi-Monte Carlo methods[D]. Hangzhou:Zhejiang University, 2003(in Chinese). [7] 郭媛媛, 孙有朝, 李龙彪. 基于蒙特卡罗方法的民用飞机故障风险评估方法[J]. 航空学报, 2017, 38(10):221126. GUO Y Y, SUN Y C, LI L B. Failure risk assessment method of civil aircraft based on Monte Carlo method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):221126(in Chinese). [8] 武朋玮, 李颖晖, 郑无计, 等. 基于可达集方法的结冰飞机着陆阶段安全风险评估[J]. 航空学报, 2018, 39(12):122139. WU P W, LI Y H, ZHENG W J, et al. Flight risk evaluation based on reachable set method at the phase of icing aircraft landing[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122139(in Chinese). [9] LI Z, XU H J, XUE Y, et al. Flight risk quantitative assessment based on extreme values of flight parameters[C]//The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018), 2019. [10] LI Z, XU H J, XUE Y, et al. On flight risk quantitative evaluation under icing conditions[J]. Mathematical Problems in Engineering, 2019, 2019:1-14. [11] WEI Y, XU H J, XUE Y, et al. Quantitative assessment and visualization of flight risk induced by coupled multi-factor under icing conditions[J]. Chinese Journal of Aeronautics, 2020, 33(8):2146-2161. [12] HUI K, WOLDE M, BROWN A, et al. Flight dynamics model of turboprop transport aircraft icing effects based on preliminary flight data[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005. [13] LAMPTON A, VALASEK J. Prediction of icing effects on the dynamic response of light airplanes[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3):722-732. [14] LAMPTON A, VALASEK J. Prediction of icing effects on the lateral/directional stability and control of light airplanes[J]. Aerospace Science and Technology, 2012, 23(1):305-311. [15] BRAGG M, HUTCHISON T, MERRET J. Effect of ice accretion on aircraft flight dynamics[C]//38th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2000. [16] DOGAN A, KAEWCHAY K. Probabilistic human pilot approach:application to microburst escape maneuver[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):357-369. [17] KHODADADI L, SAMADI B, KHALOOZADEH H. Estimation of region of attraction for polynomial nonlinear systems:a numerical method[J]. ISA Transactions, 2014, 53(1):25-32. [18] CHAKRABORTY A, SEILER P, BALAS G J. Nonlinear region of attraction analysis for flight control verification and validation[J]. Control Engineering Practice, 2011, 19(4):335-345. [19] JARVIS-WLOSZEK Z. Lyapunov based analysis and controller synthesis for polynomial systems using sum-of-squares optimization[J]. Optimization, 2003, 23(5):1-49. [20] TAN W. Nonlinear control analysis and synthesis using sum-of-squares programming[D]. Berkeley:University of California, 2006. [21] 李宁. 基于矩量理论和Sum-of-Squares最优化理论的吸引域估计[D]. 沈阳:东北大学, 2008. LI N. Estimating domains of attraction based on moment and sum-of-squares optimization[D]. Shenyang:Northeastern University, 2008(in Chinese). [22] HUESCHEN R M. Development of the Transport Class Model (TCM) aircraft simulation from a sub-scale Generic Transport Model (GTM) simulation:NASA/TM-2011-217169[R]. Washington, D.C.:NASA, 2011. [23] PANDITA R, CHAKRABORTY A, SEILER P, et al. Reachability and region of attraction analysis applied to GTM dynamic flight envelope assessment[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2009. [24] FRENCH J, KOKOSZKA P, STOEV S, et al. Quantifying the risk of heat waves using extreme value theory and spatio-temporal functional data[J]. Computational Statistics & Data Analysis, 2019, 131:176-193. [25] LI Z, XU H J, XUE Y, et al. On flight risk quantitative evaluation under icing conditions[J]. Mathematical Problems in Engineering, 2019(10):1-14. [26] NELSEN R B. Introduction[M]//An introduction to copulas. New York:Springer, 1999. [27] CHAKRABORTY A, SEILER P, BALAS G J. Susceptibility of F/A-18 flight controllers to the falling-leaf mode:linear analysis[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1):57-72. |