[1] CONNOR P, DEA A, KENNEDY Q, et al. Measuring safety climate in aviation:A review and recommendations for the future[J]. Safety Science, 2011, 49(2):128-138.
[2] BRAGG M B, PERKINS W R, SARTER N B, et al. An interdisciplinary approach to inflight aircraft icing safety:AIAA-1998-0095[R]. Reston:AIAA, 1998.
[3] HUI K, WOLDE M, BROWN A. Flight dynamics model of turboprop transport aircraft icing effects based on preliminary flight data:AIAA-2005-1068[R]. Reston:AIAA, 2005.
[4] KRZYSZTOF S, MACIEJ L, EDYTA L, et al. Aircraft flight dynamics with simulated ice accretion:AIAA-2004-4948[R]. Reston:AIAA, 2004.
[5] FRANK T L, ADBOLLAH K. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8):669-767.
[6] THOMAS P R, BILLY P B, SAM L. Current methods for modeling and simulating icing effects on aircraft performance stability and control:AIAA-2008-6204[R]. Reston:AIAA, 2008.
[7] 王明丰, 王立新, 黄成涛. 积冰对飞机纵向操稳特性的量化影响[J]. 北京航空航天大学学报, 2008, 34(5):592-595. WANG M F, WANG L X, HUANG C T. Computational effects of ice accretion on aircraft longitudinal stability and control[J]. Journal of Beijng University of Aeronautics and Astronautics, 2008, 34(5):592-595(in Chinese).
[8] LAMPTON A, VALASEK J. Prediction of icing effects on the dynamic response of light airplanes[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3):722-732.
[9] LAMPTON A, VALASEK J. Prediction of icing effects on the coupled dynamic response of light airplanes[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):656-673.
[10] LAMPTON A, VALASEK J. Prediction of icing effects on the lateral directional stability and control of light[J]. Aerospace Science and Technology, 2012, 23:305-311.
[11] BRAGG M B, BASAR T, PERKINS W R, et al. Smart icing systems for aircraft icing safety:AIAA-2002-0813[R]. Reston:AIAA, 2002.
[12] ROBERT W D, GLEN A D. Icing encounter flight simulator[J]. Journal of Aircraft, 2006, 43(5):1528-1537.
[13] DAVID R G, BILLY B, RICHARD R, et al. Development and implementation of a model-driven envelope protection system for in-flight ice contamination:AIAA-2010-8141[R]. Reston:AIAA, 2010.
[14] RICHARD R, BORJA M, BILLY N, et al. Piloted simulation to evaluate the utility of a real time envelope protection system for mitigating in-flight icing hazards:AIAA-2010-7987[R]. Reston:AIAA, 2010.
[15] DAVID R G. Requirements and modeling of in-flight icing effects for flight training:AIAA-2013-5075[R]. Reston:AIAA, 2013.
[16] Society of Automotive Engineers. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment:ARP 4761[S]. Washington, D.C.:SAE,1996.
[17] Society of Automotive Engineers. Certification considerations for high-integrated or complex aircraft systems:ARP 4754[S]. Washington, D.C.:SAE, 2010.
[18] USA Department of Defense. Airworthiness certification criteria:MIL-HDBK-516B[S]. Washington, D.C.:DOD, 2005.
[19] USA Department of Defense. Standard practice for system safety:MIL-STD-882E[S]. Washington, D.C.:DOD, 2012.
[20] USA Department of Defense. Flying qualities of piloted aircraft:MIL-STD-1797B[S]. Washington, D.C.:DOD, 2012:673-695.
[21] BROOKER P. Experts, Bayesian belief networks, rare events and aviation risk estimates[J]. Safety Science, 2011, 49(8):1142-1155.
[22] WANG W H, JIANG X B, XIA S C. Incident tree model and incident tree analysis method for quantified risk assessment:An in-depth accident study in traffic operation[J]. Safety Science, 2010, 48(10):1248-1262.
[23] MATTHEWS B, DAS S, BHADURI K, et al. Discovering anomalous aviation safety events using scalable data mining algorithms[J]. Journal of Aerospace Information Systems, 2013, 10(10):467-475.
[24] OCAMPO J, MILLWATER H, SINGH G, et al. Development of a probabilistic linear damage methodology for small aircraft[J]. Journal of Aircraft, 2011, 48(6):2090-2106.
[25] BALACHANDRAN S, ATKINS E M. A constrained Markova decision process framework for flight safety assessment and management:AIAA-2015-0115[R]. Reston:AIAA, 2015.
[26] NELSEN R B. An introduction to copulas[M]. 2rd ed. New York:Springer, 2006:51-108.
[27] DIKS C, PANCHENKO V, SOKOLINSKIY O, et al. Comparing the accuracy of multivariate density forecasts in selected regions of the copula support[J]. Journal of Economic Dynamics & Control, 2014, 48:79-94.
[28] SUKCHAROEN K, ZOHRABYAN T, LEATHAM D, et al. Interdependence of oil prices and stock market indices:A copula approach[J]. Energy Economics, 2014, 44:331-339.
[29] JÄSCHKE S. Estimation of risk measures in energy portfolios using modern copula techniques[J]. Computational Statistics and Data Analysis, 2014, 76:359-376.
[30] YASMIN S, ELURU N, ABDUL R, et al. Examining driver injury severity in two vehicle crashes-A copula based approach[J]. Accident Analysis and Prevention, 2014, 66(3):120-135.
[31] MASIN M, LAMBERTI A, ARCHETTI R. Coastal flooding:A copula based approach for estimating the joint probability of water levels and waves[J]. Coastal Engineering, 2015, 97:37-52.
[32] BESSA R J, MIRANDA V, BOTTERUD A, et al. Time-adaptive quantile-copula for wind power probabilistic forecasting[J]. Renewable Energy, 2012, 40(1):29-39.
[33] ERYILMAZ S. Estimation in coherent reliability systems through Copulas[J]. Reliability Engineering and System Safety, 2011, 96(5):564-568.
[34] BERGER T. Forecasting value-at-risk using time varying copulas and EVT return distributions[J]. International Economics, 2013, 133:93-106.
[35] MOAZAMI S, GOLIAN S, KAVIANPOUR M R, et al. Uncertainty analysis of bias from satellite rainfall estimates using copula method[J]. Atmospheric Research, 2014, 137(2):145-166.
[36] XUE Y, XU H J, WANG X L. Build probability distribution maps of flight risk during wake encountering[J]. Journal of Aircraft, 2015, 52(3):805-818. |