[1] National Aeronautics and Space Administration Wallops Flight Facility. Final environmental assessment E-2/C-2 field carrier landing practice operations at emporia-greensville regional airport[R]. Virginia:Department of Navy, 2013:105-249. [2] FORTENBAUGH R. Practical integration of direct lift control into an automatic carrier landing system[C]//Guidance and Control Conference. Reston:AIAA, 1972. [3] MEGAN E. Navy's MAGIC CARPET simplifies carrier landings:interim fielding this fall[EB/OL].[2020-09-21]. http:www.news.usni.org.org/2016/06/30/navys-magic-carpet-simplifies-carrier-landings-interim-fielding-fall. [4] HEFFLEY R. Terminal control factors for the carrier landing task[C]//Astrodynamics Conference. Reston:AIAA, 1986. [5] DURAND T S, WASICKO R J. Factors influencing glide path control in carrier landing[J]. Journal of Aircraft, 1967, 4(2):146-158. [6] 杨一栋,余俊雅. 舰载飞机着舰引导与控制[M]. 北京:国防工业出版社,2007:131-148. YANG Y D, YU J Y. Carrier landing guidance and control of carrier-based aircraft[M]. Beijing:National Defense Industry Press, 2007:131-148(in Chinese). [7] PHELPS D, GAMAGEDARA K, WALDRON J, et al. Ship air wake detection using small fixed wing unmanned aerial vehicle[C]//2018 AIAA Aerospace Sciences Meeting. Reston:AIAA, 2018. [8] MALLON C J, MUTHIG B J, GAMAGEDARA K, et al. Measurements of ship air wake using airborne anemometers[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017. [9] 焦鑫, 江驹, 王新华, 等. 基于模型参考模糊自适应的舰尾流抑制方法[J]. 南京航空航天大学学报, 2013, 45(3):396-401. JIAO X, JIANG J, WANG X H, et al. Air wake rejecting method based on model reference fuzzy adapting system control[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(3):396-401(in Chinese). [10] ZHU Q D, YANG Z B. Design of air-wake rejection control for longitudinal automatic carrier landing cyber-physical system[J]. Computers & Electrical Engineering, 2020, 84:106637. [11] DENHAM J W. Project MAGIC CARPET:"advanced controls and displays for precision carrier landings"[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016. [12] SHAFER D M, PAUL R C, KING M J, et al. Aircraft carrier landing demonstration using manual control by a ship-based observer[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019. [13] 段卓毅, 王伟, 耿建中, 等. 舰载机人工进场着舰精确轨迹控制技术[J]. 航空学报, 2019, 40(4):622328. DUAN Z Y, WANG W, GENG J Z, et al. Precision trajectory manual control technologies for carrier-based aircraft approaching and landing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):622328(in Chinese). [14] 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2):020435. ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):020435(in Chinese). [15] 吴文海, 汪节, 高丽, 等. MAGIC CARPET着舰技术分析[J]. 系统工程与电子技术, 2018, 40(9):2079-2091. WU W H, WANG J, GAO L, et al. Analysis on MAGIC CARPET carrier landing technology[J]. Systems Engineering and Electronics, 2018, 40(9):2079-2091(in Chinese). [16] DURHAM W, BORDIGNON K A, BECK R. Aircraft control allocation[M]. Chichester:John Wiley & Sons, Ltd, 2016. [17] 赵帅, 段卓毅, 李杰, 等. 涡桨飞机螺旋桨滑流气动干扰效应及流动机理[J]. 航空学报, 2019, 40(4):122469. ZHAO S, DUAN Z Y, LI J, et al. Interference effects and flow mechanism of propeller slipstream for turboprop aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122469(in Chinese). [18] 文传源. 现代飞行控制[M]. 北京:北京航空航天大学出版社, 2004:175-181. WEN C Y. Modern aircraft control[M]. Beijing:Beihang University Press, 2004:175-181(in Chinese). [19] WENDELL W K. Simulator evaluation of a flight-path-angle control system for a transport airplane with direct lift control:NASA TP 1116[R]. Washington, D.C.:NASA, 1978. [20] 李导. 基于非线性动态逆方法的飞机控制律设计与应用研究[D]. 西安:西北工业大学, 2015:61-64. LI D. The research and application of nonlinear dynamic control design for aircraft[D]. Xi'an:Northwestern Polytechnical University, 2015:61-64(in Chinese). [21] SNELL S A, ENNS D F, GARRARD W L. Nonlinear inversion flight control for a super maneuverable aircraft[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(4):976-984. [22] AZAM M, SINGH S N. Invertibility and trajectory control for nonlinear maneuvers of aircraft[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1):192-200. [23] BUGAJSKI D J, ENNS D F. Nonlinear control law with application to high angle-of-attack flight[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(3):761-767. [24] MILLER C J. Nonlinear dynamic inversion baseline control law:architecture and performance predictions[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011. [25] MILLER C J. Nonlinear dynamic inversion baseline control law:flight-test results for the full-scale advanced systems testbed F/A -18 aircraft[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011. [26] 陈海兵, 张曙光, 方振平. 加速度反馈的隐式动态逆鲁棒非线性控制律设计[J]. 航空学报, 2009, 30(4):597-603. CHEN H B, ZHANG S G, FANG Z P. Implicit NDI robust nonlinear control design with acceleration feedback[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):597-603(in Chinese). [27] 魏扬, 徐浩军, 薛源, 等. 基于神经网络自适应动态逆的结冰飞机飞行安全边界保护方法[J]. 航空学报, 2019, 40(5):122488. WEI Y, XU H J, XUE Y, et al. Aircraft flight safety envelope protection under icing conditions based on adaptive neural network dynamic inversion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122488(in Chinese). [28] 党小为, 唐鹏, 孙洪强, 等. 基于角加速度估计的非线性增量动态逆控制及试飞[J]. 航空学报, 2020, 41(4):323534. DANG X W, TANG P, SUN H Q, et al. Incremental nonlinear dynamic inversion control and flight test based on angular acceleration estimation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):323534(in Chinese). [29] Department of Defense. Flying qualities of piloted aircraft:MIL-STD-1797B[R].Washington, D.C.:US Department of Defense, 2006. |