[1] ALTUǦ T M. EKF based attitude estimation and stabilization of a quadrotor UAV using vanishing points in catadioptric images[J]. Journal of Intelligent & Robotic Systems, 2011, 62:587-607. [2] 陈志明, 牛康, 李磊, 等. 基于BSP-ANN的四旋翼无人机轨迹跟踪方法[J]. 航空学报, 2018, 39(6):321924. CHEN Z M, NIU K, LI L, et al. Trajectory tracking for quadrotor UAV based on BSP-ANN[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):321924(in Chinese). [3] 邢伯阳, 潘峰, 王位, 等. 基于复合地标导航的动平台四旋翼飞行器自主优化降落技术[J]. 航空学报, 2019, 40(6):322601. XING B Y, PAN F, WANG W, et al. Moving platform self-optimization landing technology for quadrotor based on hybrid landmark[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):322601(in Chinese). [4] ZHANG Y, YU X, WANG B, LIU D. Design and implementation of fault-tolerant control algorithms for an unmanned quadrotor system[J]. Control Engineering of China, 2016, 23(12):1874-1882. [5] 张佳龙, 闫建国, 张普. 基于自适应方法的多无人机编队队形控制[J]. 航空学报, 2020, 41(1):323385. ZHANG J L, YAN J G, ZHANG P. Multi-UAV formation forming control based on adaptive method under wind field disturbances[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):323385(in Chinese). [6] 张秀云, 宗群, 窦立谦, 等. 柔性航天器振动主动抑制及姿态控制[J]. 航空学报, 2019, 40(4):322503. ZHANG X Y, ZHONG Q, DOU L Q, et al. Active vibration suppression and attitude control for flexible spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):322503(in Chinese). [7] CHEN W H, YANG J, GUO L, et al. Disturbance-observer-based control and related methods-An overview[J]. IEEE Transactions on Industrial Electronics, 2015, 63(2):1083-1095. [8] CHEN W H, BALANCE D J, GAWTHROP P J, et al. A nonlinear disturbance observer for robotic manipulators[J]. IEEE Transactions on Industrial Electronics, 2000, 47(4):932-938. [9] XU B, SHOU Y, LUO J, et al. Neural learning control of strict-feedback systems using disturbance observer[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(5):1296-1307. [10] SHAO S, CHEN M, CHEN S, et al. Adaptive neural control for an uncertain fractional-order rotational mechanical system using disturbance observer[J]. IET Control Theory & Applications, 2016, 10(16):1972-1980. [11] XU B. Disturbance observer-based dynamic surface control of transport aircraft with continuous heavy cargo airdrop[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 47(1):161-170. [12] LIU H, WANG H, SUN J. Attitude control for tilt rotorcraft based on sliding mode containing disturbance observer[C]//The 2017 4th International Conference on Systems and Informatics, 2017:84-88. [13] LEE D. Nonlinear disturbance observer-based robust control for spacecraft formation flying[J]. Aerospace Science and Technology, 2018, 76:82-90. [14] CHEN F, LIU W, ZHANG K, et al. A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer[J]. Nonlinear Dynamics, 2016, 85(2):1281-1295. [15] BESNARD L, SHTESSEL Y B, LANDRUM B. Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer[J]. Journal of the Franklin Institute, 2012, 349(2):658-684. [16] LEE K, BACK J, CHOY I. Nonlinear disturbance observer based robust attitude tracking controller for quadrotor UAVs[J]. International Journal of Control, Automation and Systems, 2014, 12(6):1266-1275. [17] WANG H, CHEN M. Trajectory tracking control for an indoor quadrotor UAV based on the disturbance observer[J]. Transactions of the Institute of Measurement and Control, 2016, 38(6):675-692. [18] LIN X, YU Y, SUN C Y. A decoupling control for quadrotor UAV using dynamic surface control and sliding mode disturbance observer[J]. Nonlinear Dynamics, 2019, 97(1):781-795. [19] 范佳明, 陈奕梅. 四旋翼无人机反步自适应容错控制研究[J]. 计算机仿真, 2017, 34(7):79-82. FAN J M, CHEN Y M. Research on adaptive backstepping fault-tolerant control for quadrotor UAV[J]. Computer Simulation, 2017, 34(7):79-82(in Chinese). [20] 董旺, 齐瑞云, 姜斌. 空天飞行器直接力/气动力复合容错控制[J]. 航空学报, 2020, 41(11):623850. DONG W, QI R Y, JIANG B. Composite fault tolerant control for aerospace vehicle with swing engines and aerodynamic Fins[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):623850(in Chinese). [21] 张普, 薛惠锋, 高山. 基于分布式自适应的多智能体容错一致性控制[J].航空学报, 2020, 41(3):323539. ZHANG P, XUE H F, GAO S. Distributed adaptive fault-tolerance consensus control for multi-agent system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):323539(in Chinese). [22] 韩治国, 张科, 吕梅柏, 等. 航天器自适应快速非奇异终端滑模容错控制[J]. 航空学报, 2016, 37(10):3092-3100. ZHANG Z G, ZHANG K, LYU M B, et al. Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3092-3100(in Chinese). [23] HU Q, XIAO L, WANG C. Adaptive fault-tolerant attitude tracking control for spacecraft with time-varying inertia uncertainties[J]. Chinese Journal of Aeronautics, 2019, 32(3):674-687. [24] WANG X, XIANG C, NAJJARAN H, et al. Robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft with actuator saturation[J]. Chinese Journal of Aeronautics, 2018, 31(6):1298-1310. [25] MAREELS I M Y, PENFOLD H B, EVANS R J. Controlling nonlinear time-varying systems via Euler approximations[J]. Automatica, 1992, 28(4):681-696. |