[1] 张佳龙, 闫建国, 张普. 基于反步推演法的多机编队队形重构控制[J]. 航空学报, 2019, 40(11):323177. ZHANG J L, YAN J G, ZHANG P. Multi-UAV formation forming reconfiguration control based on backing-steeping method[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):323177(in Chinese). [2] 张佳龙, 闫建国, 张普. 基于自适应方法的多无人机编队队形控制[J]. 航空学报, 2020, 41(1):323385. ZHANG J L, YAN J G, ZHANG P. Multi-UAV formation forming control based on adaptive method under wind field disturbances[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):323385(in Chinese). [3] ROSA M R, BALDI S, WANG X, et al. Adaptive hierarchical formation control for uncertain Euler-Lagrange systems using distributed inverse dynamics[J]. European Journal of Control, 2018, 48:52-56. [4] 马培蓓, 雷明, 纪军. 均等通信时滞下多UAV协同编队控制[J]. 航空学报, 2017, 38(S1):721551. MA P B, LEI M, JI J. Control of multi-UAV cooperative formation with equality communication time-delay[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):721551(in Chinese). [5] LIAO F, TEO R, WANG J L, et al. Distributed formation and reconfiguration control of VTOL UAVs[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1):270-277. [6] 夏庆军, 张安, 张耀中. 大规模编队空战队形优化算法[J]. 控制理论与应用, 2010, 27(10):1418-1422. XIA Q J, ZHANG A, ZHANG Y Z. Formation-optimizing algorithm for large-scale air combat[J]. Control Theory & Applications, 2010, 27(10):1418-1422(in Chinese). [7] 钱斌, 姜长生. 遗传算法在直升机空战编队优化中的应用[J]. 电光与控制, 2008, 15(1):6-9. QIAN B, JIANG C S. On air combat formation of helicopters based on genetic slgorithm[J]. Electronics Optics & Control, 2008, 15(1):6-9(in Chinese). [8] 张科施. 基于遗传算法的空战编队优化研究[D]. 西安:西北工业大学, 2003:8-9. ZHANG K S. On optimizing large-scale air-combat formation with genetic algorithm[D]. Xi'an:Northwestern Polytechnical University, 2003:8-9(in Chinese). [9] 张科施, 王正平. 基于遗传模拟退火算法的空战编队优化研究[J]. 西北工业大学学报, 2003, 21(4):477-480. ZHANG K S, WANG Z P. On Optimizing large-scale air-combat formation with simulated-annealing GA (Genetic Algorithm)[J]. Journal of Northwestern Polytechnical University, 2003, 21(4):477-480(in Chinese). [10] MULGUND S, HARPER K, KRISHNAKUMAR K, et al. Air combat tactics optimization using stochastic genetic algorithms[C]//IEEE International Conference on Systems, Man, & Cybernetics. Piscataway:IEEE Press, 1998:3136-3141. [11] MULGUND S, HARPER K, ZACHARIAS G. Large-scale air combat tactics optimization using genetic algorithms[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(1):140-142. [12] VIRTANEN K, KARELAHTI J, RAIVIO T. Modeling air combat by a moving horizon influence diagram game[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5):1080-1091. [13] 费爱国, 张陆游, 丁前军. 基于拍卖算法的多机协同火力分配[J]. 系统工程与电子技术, 2012, 34(9):1829-1833. FEI A G, ZHANG L Y, DING Q J. Multi-aircraft cooperative fire assignment based on auction agorithm[J]. Systems Engineering and Electronics, 2012, 34(9):1829-1833(in Chinese). [14] 冉华明,周锐,董卓宁,等. 空战中协同干扰、探测、攻击任务分配[J]. 北京航空航天大学学报, 2015, 29(5):911-918. RAN H M, ZHOU R, DONG Z N, et al. Cooperative jamming-detecting-attacking task allocation in air combat[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5):911-918(in Chinese). [15] 肖冰松,方洋旺,夏海宝,等. 多机协同对空目标探测与攻击任务的最优分配[J]. 火力与指挥控制, 2011, 36(6):19-23. XIAO B S, FANG Y W, XIA H B, et al. Optimal allocation of aerial target detection and attack in cooperative multi-fighter air combat[J]. Huoli yu Zhihui Kongzhi, 2011, 36(6):19-23(in Chinese). [16] 崔晓宝, 李楠. 机载PD雷达对机动目标探测盲区计算模型研究[J].火控雷达技术, 2008, 37(3):36-40. CUI X B, LI N. Research on calculation models for detection blind zone of airborne PD radar against maneuvering targets[J]. Fire Control Radar Technology, 2008, 37(3):36-40(in Chinese). [17] 朱宝鎏,朱荣昌,熊笑非.作战飞机效能评估[M]. 2版.北京:航空工业出版社,2006. ZHU B L, ZHU R C, XIONG X F. Fighter plane effectiveness assessment[M]. 2nd ed. Beijing:Aviation Industry Press, 2006(in Chinese). [18] 王婷,符小卫,高晓光.基于改进遗传算法的异构多无人机任务分配[J].火力与指挥控制,2013,38(5):37-41. WANG T, FU X W, GAO X G. Cooperative task assignment for heterogeneous multi-UAVs based on improved genetic algorithm[J]. Fire Control and Command Control, 2013, 38(5):37-41(in Chinese). [19] SHIMA T, RASMUSSEN S J, SPARKS A G, et al. Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms[J]. Computers & Operations Research, 2006, 33(11):3252-3269. [20] CHOI H L, BRUNET L, HOW J P. Consensus-based decentralized auctions for robust task allocation[J]. IEEE Transactions on Robotics, 2009, 25(4):912-926. [21] SHIMA T, RASMUSSEN S J, SPARKS A G. UAV cooperative multiple task assignments using genetic algorithms[C]//American Control Conference. Piscataway:IEEE Press, 2005:2989-2994. [22] 吴华, 史忠亚, 沈文迪, 等. 基于IFS和IPSO算法的干扰资源分配方法[J]. 北京航空航天大学学报, 2017, 43(12):2370-2376. WU H, SHI Z Y, SHEN W D, et al. Distribution method of jamming resource based on IFS and IPSO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12):2370-2376(in Chinese). [23] XING X J, FAN D SH, ZHAO Y Q, et al. PSO-based multi UCAVs cooperative attack tasks allocation and its simulation[C]//201612th International Conference on Natural Computation and 13th Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). Piscataway:IEEE Press, 2016:598-601. [24] 李俨, 董玉娜. 基于SA-DPSO混合优化算法的协同空战火力分配[J]. 航空学报, 2010, 31(3):626-631. LI Y, DONG Y N. Weapon-target assignment based on simulated annealing and discrete particle swarm optimization in cooperative air combat[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):626-631(in Chinese). [25] 宋遐淦, 江驹, 徐海燕. 改进模拟退火遗传算法在协同空战中的应用[J]. 哈尔滨工程大学学报, 2017, 38(11):1762-1768. SONG X G, JIANG J, XU H Y. Application of improved simulated annealing genetic algorithm in cooperative air combat[J]. Journal of Harbin Engineering University, 2017, 38(11):1762-1768(in Chinese). [26] ASIM T, SEROL B. Weapon target assignment with combinatorial optimization techniques[J]. International Journal of Advanced Research in Artificial Intelligence, 2013, 2(17):39-50. |