[1] 邓学蓥, 竹军, 王延奎, 等. 高机动飞行器非指令运动及其控制的研究进展[J]. 力学与实践, 2012, 34(3):1-8. DENG X Y, ZHU J, WANG Y K, et al. The progress of studies of uncommanded motion and its suppression of flying vehicle with high manueverability[J]. Mechanics in Engineering, 2012, 34(3):1-8(in Chinese). [2] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3):185-248. [3] HALL R, WOODSON S. Introduction to the abrupt wing stall program[J]. Journal of Aircraft, 2004, 41(3):425-435. [4] HALL R M, WOODSON S H, CHAMBERS J R. Overview of the abrupt wing stall program[J]. Progress in Aerospace Sciences, 2004, 40(7):417-452. [5] HALL R M, WOODSON S H, CHAMBERS J R. Accomplishments of the abrupt-wing-stall program[J]. Journal of Aircraft,2005, 42(3):653-660. [6] OWENS B, BRANDON J, CROOM M, et al. Overview of dynamic test techniques for flight dynamics research at NASA LaRC[C]//AIAA Aerodynamic Measurement Technology & Ground Testing Conference. Reston:AIAA, 2006. [7] WANG B, DENG X Y, MA B F, et al. Effects of tip perturbation and wing locations on rolling oscillation induced by forebody vortices[J]. Acta Mechanica Sinica, 2010, 26(5):787-791. [8] MA B F, HUANG Y, DENG X Y. Dynamic responses of asymmetric vortices over slender bodies to a rotating tip perturbation[J]. Experiments in Fluids, 2016, 57(4):54. [9] MA B F, WANG B, DENG X Y. Effects of Reynolds numbers on wing rock induced by forebody vortices[J]. AIAA Journal, 2017, 55(9):2980-2991. [10] MOHAMED A, WATKINS S, FISHER A, et al. Bioinspired wing-surface pressure sensing for attitude control of micro air vehicles[J]. Journal of Aircraft, 2015, 52(3):827-838. [11] MOHAMED A, MASSEY K, WATKINS S, et al. The attitude control of fixed-wing MAVS in turbulent environments[J]. Progress in Aerospace Sciences, 2014, 66:37-48. [12] BURELLE L A, YANG W, RIVAL D E. From sparse pressure measurements to prediction of instantaneous loads:A test case on delta wings in axial and transverse gusts[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020. [13] THOMPSON K, XU Y, DICKINSON B T. Aerodynamic moment model calibration from distributed pressure arrays[J]. Journal of Aircraft, 2017,54(2):716-723. [14] LE PROVOST M, HE X, WILLIAMS D R. Real-time roll and pitching moment identification with distributed surface pressure sensors on a ucas wing[C]//2018 AIAA Aerospace Sciences Meeting. Reston:AIAA. 2018. [15] 陈尹. 基于大气数据传感器的飞行器绕流感知技术实验研究[D]. 南京:南京航空航天大学, 2020. CHEN Y. Experimental research of flow perception around aircrafts technology based on air data sensors[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2020(in Chinese). [16] 孙之骏. 流向涡与物面相互作用规律及其在流动控制中的应用[D]. 南京:南京航空航天大学, 2020. SUN Z J. Streamwise vortex-surface interaction and its application in flow control[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2020(in Chinese). [17] 顾蕴松, 史楠星, 孙之骏, 等. 一种基于飞行状态感知的智能飞行器:中国:202020140981.0[P]. 2020-01-01. GU Y S, SHI N X, SUN Z J, et al. An intelligent vehicle based on flight state perception:China:202020140981.0[P]. 2020-01-01(in Chinese). [18] 唐敏中, 王铁, 张伟, 等. 低速三角翼滚摆试验研究[J]. 空气动力学学报, 1997, 15(4):436-443. TANG M Z, WANG T, ZHANG W, et al. Low speed experimental investigation on wing rock[J]. Acta Aerodynamic Sinica, 1997, 15(4):436-443(in Chinese). [19] ARENA A S, NELSON R C. Experimental investigations on limit cycle wing rock of slender wings[J]. Journal of Aircraft, 1994, 31(5):1148-1155. [20] BOER R G D, CUNNINGHAM A M. Low-speed unsteady aerodynamics of a pitching straked wing at high incidence-part I:Test program[J]. Journal of Aircraft, 1990, 27(1):23-30. [21] VERHAAGEN N G. Effects of Reynolds number on flow over 76/40-degree double-delta wings[J]. Journal of Aircraft, 2002, 39(6):1045-1052. [22] 冯亚南, 郑波, 权少平. 双三角翼大迎角翼面压强分布与涡态相关分析[J]. 北京航空航天大学学报, 1998(2):181-184. FENG Y N, ZHENG B, QIAN S P. Correlative analysis between pressure distributions and vortex pattern of double delta wings at high angles of attack[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998(2):181-184(in Chinese). [23] 阎超, 桂永丰, 黄贤禄, 等. 双三角翼前缘剖面形状对涡运动的影响[J]. 航空学报, 2001, 22(3):193-197. YAN C, GUI Y F, HUANG X L, et al. Numerical investigations of the effects of different leading edge profiles on the vortex flows over double-delta wings[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(3):193-197(in Chinese). [24] 孙海生, 姜裕标, 刘志涛, 等. 80°/65°双三角翼模型大迎角气动特性风洞实验研究[J]. 实验流体力学, 2011, 25(6):6-12. SUN H S, JIANG Y B, LIU Z T, et al. Experimental research on the high angle of attack aerodynamic characteristics of an 80°/65°double delta wing[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6):6-12(in Chinese). |