[1] WANG E, WU S, WU Z, et al. Distributed adaptive vibration control for solar power satellite during on-orbit assembly[J]. Aerospace Science and Technology, 2019, 94:105378. [2] SAUNDERS C, LOBB D, SWEETING M, et al. Building large telescopes in orbit using small satellites[J]. Acta Astronautica, 2017, 141:183-195. [3] SHE Y C, LI S, DU B, et al. On-orbit assembly mission planning considering topological constraint and attitude disturbances[J]. Acta Astronautica, 2018, 152:692-704. [4] 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2):242-256. LIANG B, DU X D, LI C, et al. Research progress on in-orbit service of space robot non-cooperative spacecraft[J]. Robot, 2012, 34(2):242-256(in Chinese). [5] 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4):805-811. CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4):805-811(in Chinese). [6] 贾平. 国外在轨装配技术发展简析[J]. 国际太空, 2016(12):61-64. JIA P. Development analysis of foreign on-orbit assembly technologies[J]. Space International, 2016(12):61-64(in Chinese). [7] 杨延蕾, 江炜. 在轨3D打印及装配技术在深空探测领域的应用研究进展[J]. 深空探测学报, 2016, 3(3):282-287. YANG Y L, JIANG W. Review of on-orbit 3D printing and assembly technology for deep space exploration application[J]. Journal of Deep Space Exploration, 2016, 3(3):282-287(in Chinese). [8] 王雪瑶. 国外在轨服务系统最新发展[J]. 国际太空, 2017(11):65-69. WANG X Y. Development of foreign on-orbit service systems[J]. Space International, 2017(11):65-69(in Chinese). [9] 李团结, 马小飞, 岳华, 等. 大型空间天线在轨装配技术[J]. 载人航天, 2013, 19(1):86-90. LI T J, MA X F, YUE H, et al. On-orbit assembly technology of large space antennas[J]. Manned Spaceflight, 2013, 19(1):86-90(in Chinese). [10] 刘冰雁, 叶雄兵, 周赤非, 等. 基于改进DQN的复合模式在轨服务资源分配[J]. 航空学报, 2020, 41(5):323630. LIU B Y, YE X B, ZHOU C F, et al. Allocation of composite mode on-orbit service resource based on improved DQN[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):323630(in Chinese). [11] STARITZ P, SKAFF S, URMSON C, et al. Sky-worker:a robot for assembly, inspection and maintenance of large scale orbital facilities[C]//International Conference on Robotics & Automation, 2001:4180-4185. [12] 王博, 言勇华. 基于图像的无标定视觉伺服系统[J].机械设计与研究, 2019, 35(3):135-139. WANG B, YAN Y H. Image based uncalibrated visual servoing system[J]. Machine Design & Research, 2019, 35(3):135-139(in Chinese). [13] 陈梅, 车尚岳. 无标定视觉伺服机器人跟踪控制策略研究[J]. 控制工程, 2019, 26(6):1055-1059. CHEN M, CHE S Y. Research on tracking control strategy of uncalibrated robot visual servo system[J]. Control Engineering of China, 2019, 26(6):1055-1059(in Chinese). [14] 陶波, 龚泽宇, 丁汉. 机器人无标定视觉伺服控制研究进展[J]. 力学学报, 2016,48(4):767-783. TAO B, LONG Z Y, DING H. Survey on uncalibrated robot visual servoing control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):767-783(in Chinese). [15] NI Z Y, LIU J G, WU Z G, et al. Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method[J]. Chinese Journal of Aeronautics, 2019, 32(2):303-320. [16] OLIVEIRA T R, LEITE A C, PEIXOTO A J, et al. Overcoming limitations of uncalibrated robotics visual servoing by means of sliding mode control and switching monitoring scheme[J]. Asian Journal of Control, 2014, 16(3):752-764. [17] CHEAH C C, LIU C, SLOTINE J J. Adaptive tracking control for robots with unknown kinematic and dynamic properties[J]. International Journal of Robotics Research, 2006, 25(3):283-296. [18] CHEAH C C, LIU C, SLOTINEE J J. Adaptive vision based tracking control of robots with uncertainty in depth information[C]//International Conference on Robotics and Automation, 2007:2817-2822. [19] SANTAMARIA A, GROSCH P, LIPPIELLO V, et al. Uncalibrated visual servo for unmanned aerial manipulation[J]. Transactions on Mechatronics, 2017, 22(4):1610-1621. [20] CHEAH C C, LIU C, SLOTINE J J. Adaptive Jacobian vision based control for robots with uncertain depth information[J]. Automatica, 2010, 46(7):1228-1233. [21] LIU Y H, WANG H, WANG C, et al. Uncalibrated visual servoing of robots using a depth-independent interaction matrix[J]. Transactions on Robotics, 2006, 22(4):804-817. [22] LIANG X, HUANG X, WANG M, et al. Improved stability results for visual tracking of robotic manipulators based on the depth-independent interaction matrix[J]. Transactions on Robotics, 2011, 27(2):371-379. |