ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2021, Vol. 42 ›› Issue (1): 523913-523913.doi: 10.7527/S1000-6893.2020.23913
• Review • Previous Articles Next Articles
WANG Mingming1,2, LUO Jianjun1,2, YUAN Jianping1,2, WANG Jiawen1,2, LIU Cong1,2
Received:
2020-02-29
Revised:
2020-03-22
Published:
2020-06-18
Supported by:
CLC Number:
WANG Mingming, LUO Jianjun, YUAN Jianping, WANG Jiawen, LIU Cong. In-orbit assembly technology: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(1): 523913-523913.
[1] 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007,28(4):805-811. CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007,28(4):805-811(in Chinese). [2] ABAD A F, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Science, 2014, 68(8):1-26. [3] 田甜, 刘海印. 美国航空航天局机器人在轨加注任务简析[J]. 中国航天, 2019(4):42-47. TIAN T, LIU H Y. Brief analysis of NASA robotic refueling task[J]. Aerospace China, 2019(4):42-47(in Chinese). [4] GEBHARDT C. Northrop Grumman makes history, mission extension vehicle docks to target satellite[EB/OL]. (2020-02-26)[2020-05-01]. https://www.nasaspaceflight.com/2020/02/northrop-grumman-history-mission-extension-vehicle-docks-satellite/. [5] W HJ. 我国太空"加油"技术完成在轨验证[J]. 军民两用技术与产品, 2016(15):16. W HJ. Space "fueling" technology completes on-orbit verification of China[J]. Dual Use Technologies & Products, 2016(15):16(in Chinese). [6] 白明生, 金勇, 雷剑宇, 等. 天舟一号货运飞船研制[J]. 载人航天, 2019, 25(2):249-255. BAI M S, JIN Y, LEI J Y, et al. Research and development of Tianzhou-1 cargo spacecraft[J]. Manned Spaceflight, 2019, 25(2):249-255(in Chinese). [7] 张峤, 刘冬雨, 罗超, 等. 密封舱内漂浮小球运动规律的数值模拟研究[J]. 航天器环境工程, 2018, 35(4):323-329. ZHANG Q, LIU D Y, LUO C, et al. Numerical analysis of the movement characteristics of floating balls in a pressurized cabin[J]. Spacecraft Environment Engineering, 2018, 35(4):323-329. [8] OEGERLE W R, PURVES L R, BUDINOFF J G, et al. Concept for a large scalable space telescope:In-space assembly[C]//Space Telescopes and Instrumentation I:Optical, Infrared, and Millimeter. Orlando:International Society for Optics and Photonics, 2006:62652C. [9] DATASHVILI L, ENDLER S, WEI B, et al. Study of mechanical architectures of large deployable space antenna apertures:From design to tests[J]. CEAS Space Journal, 2013, 5(3-4):169-184. [10] CHENG Z A, HOU X, ZHANG X, et al. In-orbit assembly mission for the space solar power station[J]. Acta Astronautica, 2016, 129:299-308. [11] NASA. On-orbit satellite servicing study, project report:NP-2010-08-162-GSFC[R]. Washington, D.C.:NASA Goddard Space Flight Center, 2010. [12] THRONSON H, GEFFRE J, PRUSHA S, et al. The lunar L1 gateway concept:Supporting future major space science facilities[C]//2nd Workshop on New Concepts for Far-Infrared and Submillimeter Space Astronomy, 2004:20040074295. [13] BENAROYA H, BERNOLD L. Engineering of lunar bases[J]. Acta Astronautica, 2008, 62(4-5):277-299. [14] 贾平. 国外在轨装配技术发展简析[J]. 国际太空, 2016(12):61-64. JIA P. Development analysis of foreign on-orbit assembly technologies[J]. Space International, 2016(12):61-64(in Chinese). [15] 郭继峰, 王平, 崔乃刚. 大型空间结构在轨装配技术的发展[J]. 导弹与航天运载技术, 2006(3):28-35. GUO J F, WANG P, CUI N G. Development of on-orbit assembly of large space structures[J]. Missile and Space Vehicle, 2006(3):28-35(in Chinese). [16] 刘宏, 蒋再男, 刘业超. 空间机械臂技术发展综述[J]. 载人航天, 2015, 21(5):435-443. LIU H, JIANG Z N, LIU Y C. Review of space manipulator technology[J]. Manned Spaceflight, 2015, 21(5):435-443(in Chinese). [17] ALHORN D C. Autonomous assembly of modular structures in space and on extraterrestrial locations[C]//AIP Conference Proceedings. Melville:American Institute of Physics, 2005:1121-1128. [18] SHAYLER D J, DAVID S. Skylab:America's space station[M]. Berlin:Springer Science & Business Media, 2001. [19] BEKEY I. Space construction results:The EASE/ACCESS flight experiment[J]. Acta Astronautica, 1988, 17(9):987-996. [20] HEARD JR W L, WATSON J J, ROSS J L, et al. Eva space construction:Experience and fundamental issues[C]//34th Annual AAS International Conference. Washington, D.C.:AAS, 1987:395-414. [21] HEARD W L, BUSH H G, WALLSON R E, et al. A mobile work station concept for mechanically aided astronaut assembly of large space trusses:NASA-TP-2108[R]. Washington, D.C.:NASA Langley Technical Report Server, 1983. [22] HEARD JR W L, WATSON J J, LAKE M S, et al. Tests of an alternate mobile transporter and extravehicular activity assembly procedure for the space station freedom truss:NASA-TP-3254[R]. Washington, D.C.:NASA Langley Technical Report Server, 1992. [23] LAKE M S, HEARD W L, WATSON J J, et al. Evaluation of hardware and procedures for astronaut assembly and repair of large precision reflectors:NASA-TP-2000-210317[R]. Washington, D.C.:NASA Langley Technical Report Server, 2000. [24] WHITTAKER W, URMSON C, STARITZ P, et al. Robotics for assembly, inspection, and maintenance of space macrofacilities[C]//Proceedings of AIAA Space 2000 Conference and Exposition. Reston:AIAA, 2000:AIAA-2000-5288. [25] UENO H, SATOH H, AOKI S, et al. On-orbit construction experiment by tele-operated robot arm[C]//Proceedings of the 14th International Symposium on Automation and Robotics in Construction, 1997:246-253. [26] STARITZ P J, SKAFF S, URMSON C, et al. Skyworker:A robot for assembly, inspection and maintenance of large-scale orbital facilities[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2001:4180-4185. [27] HENSHAW C G. The DARPA phoenix spacecraft servicing program:Overview and plans for risk reduction[C]//International Symposium on Artificial Intelligence and Robotics & Automation in Space. Quebec:Canadian Space Agency, 2014. [28] THRONSON H, PETERSON B M, GREENHOUSE M, et al. Human space flight and future major space astrophysics missions:Servicing and assembly[C]//SPIE Optical Engineering+Applications. Bellingham:SPIE, 2017:10398. [29] HOYT R P. SpiderFab:An architecture for self-fabricating space systems[C]//AIAA Space 2013 conference and exposition. Reston:AIAA, 2013. [30] BEALL A. NASA funds next phase of robotic satellite assembly project[EB/OL]. (2017-09-12)[2020-05-01]. https://www.therobotreport.com/nasa-funds-next-phase-robotic-satellite-assembly-project/. [31] WERNER D. NASA, Made in Space think big with Archinaut, a robotic 3D printing demo bound for ISS[EB/OL]. (2016-02-23)[2020-05-01].https://spacenews.com/nasa-made-in-space-think-big-with-archinaut-a-robotic-3d-prin-ting-demo-bo-und-for-iss/. [32] BOWMAN L M, BELVIN W K, KOMENDERA E E, et al. In-space assembly application and technology for NASA's future science observatory and platform missions[C]//Space Telescopes and Instrumentation 2018:Optical, Infrared, and Millimeter Wave. International Society for Optics and Photonics, 2018:1069826. [33] WILL R, RHODES M, DOGGETT W R, et al. An automated assembly system for large space structures[M]. Intelligent Robotic Systems for Space Exploration. Berlin:Springer, 1992:39-110. [34] HANKINS W, MIXON R, JONES H, et al. Space truss assembly using teleoperated manipulators:N89-10087[R]. Washington, D.C.:NASA Technical Report Server, 1987. [35] LANE J C, CARIGNAN C, AKIN D L. Reconfigurable control station design for robotic operations[C]//1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation. Piscataway:IEEE Press, 1997:3722-3727. [36] DORSEY J, WATSON J. Space Assembly of Large Structural System Architectures (SALSSA)[M]. Reston:AIAA SPACE, 2016:5481. [37] European Commission. Guidelines for strategic research cluster on space robotics technologies, in Horizon 2020 Space Call 2016[R]. Brussels:European Commission, 2016. [38] WERNER D. Satlets:Crazy idea or ingenious concept? This week's test on ISS will offer clues[EB/OL]. (2017-10-24)[2020-05-01]. https://spacenews.com/satlets-crazy-idea-or-ingenious-concept-this-weeks-test-on-iss-will-offer-clues/. [39] LIU H, TAN Y, LIU Y, et al. Development of Chinese large-scale space end-effector[J]. Journal of Central South University of Technology, 2011, 18(3):600-609. [40] YOON Y, RUS D. Shady3D:A robot that climbs 3D trusses[C]//Proceedings of 2007 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2007:4071-4076. [41] HJELLE D, LIPSON H. A robotically reconfigurable truss[C]//2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots. Piscataway:IEEE Press, 2009:73-78. [42] BEDROSSIAN N. International space station assembly and operation control challenges[C]//AAS Guidance and Control Conference. Washington, D.C.:AAS, 2000:AAS 00-022. [43] SAUNDERS C, LOBB D, SWEETING M, et al. Building large telescopes in orbit using small satellites[J]. Acta Astronautica, 2017, 141:183-195. [44] HILTZ M, RICE C, BOYLE K, et al. Canadarm:20 years of mission success through adaptation[C]//International Symposium on Artificial Intelligence and Robotics & Automation in Space. Quebec:Canadian Space Agency, 2001. [45] SUZUKI Y, IMADA T. Concept and technology of HTV-R:An advanced type of H-Ⅱ transfer vehicle[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2012, 10:9-18. [46] BONING P, DUBOWSKY S. Coordinated control of space robot teams for the on-orbit construction of large flexible space structures[J]. Advanced Robotics, 2010, 24(3):303-323. [47] FOUST R, CHUNG S J, HADAEGH F. Autonomous in-orbit satellite assembly from a modular heterogeneous swarm using sequential convex programming[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston:AIAA, 2016:5271. [48] CHEN T, WEN H. Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer[J]. Acta Astronautica, 2018, 147:86-96. [49] JANKOVIC M, BRINKMANN W, BARTSCH S, et al. Concepts of active payload modules and end-effectors suitable for Standard Interface for Robotic Manipulation of payloads in future space missions (SIROM) interface[C]//2018 IEEE Aerospace Conference. Piscataway:IEEE Press, 2018:1-15. [50] MAY S. NASA-The Canadian Crane[EB/OL]. (2009-04-10)[2020-05-01]. https://www.nasa.gov/audience/foreducators/k-4/features/F_Canadian_Crane.html. [51] JENETT B, CHEUNG K. BILL-E:Robotic platform for locomotion and manipulation of lightweight space structures[C]//25th AIAA/AAS Adaptive Structures Conference. Reston:AIAA, 2017:1876. [52] SCHERVAN T, KORTMANN M, SCHRODER K, et al. iBOSS modular plug & play-standardized building block solutions for future space systems enhancing capabilities and flexibility, design, architecture and operations[C]//68th International Astronautical Congress. Sydney:IAF, 2017:IAC-17-D1.2.3. [53] SOROKIN I V, MARKOV A V. Utilization of space stations:1971-2006[J]. Journal of Spacecraft and Rockets, 2008, 45(3):600-607. [54] HELORET J Y, LAINE R. Overview of the development of the European automated transfer vehicle[C]//34th COSPAR Scientific Assembly. IAF, 2002. [55] INABA N, ODA M. Autonomous satellite capture by a space robot:World first on-orbit experiment on a Japanese robot satellite ETS-VⅡ[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2000. [56] OGILVIE A, ALLPORT J, HANNAH M, et al. Autonomous satellite servicing using the orbital express demonstration manipulator system[C]//International Symposium on Artificial Intelligence and Robotics & Automation in Space. i-SAIRAS, 2008:25-29. [57] BURROWS C. Hubble space telescope:Optical telescope assembly handbook[M]. Space Telescope Science Institute, 1990. [58] REED B B, SMITH R C, NAASZ B J, et al. The Restore-L servicing mission[M]. Reston:AIAA, 2016. [59] PATANE S, JOYCE E R, SNYDER M P, et al. Archinaut:In-space manufacturing and assembly for next-generation space habitats[C]//AIAA Space and Astronautics Forum and Exposition. Reston:AIAA, 2017. [60] WATSON J J, COLLINS T J, BUSH H G. A history of astronaut construction of large space structures at NASA Langley Research Center[C]//Proceedings of IEEE Aerospace Conference. Piscataway:IEEE Press, 2002:7. [61] 李志奇, 刘伊威, 于程隆, 等. 机器人航天员精细操作方法及在轨验证[J]. 载人航天, 2019, 25(5):606-612. LI Z Q, LIU Y W, YU C L, et al. Elaborate operation method for robot astronaut and its on-orbit verification[J]. Manned Spaceflight, 2019, 25(5):606-612(in Chinese). [62] 刘宏, 李志奇, 刘伊威, 等. 天宫二号机械手关键技术及在轨试验[J]. 中国科学:技术科学, 2018, 48(12):1313-1320. LIU H, LI Z Q, LIU Y W, et al. Key technologies of TianGong-2 robotic hand and its on-orbit experiments[J]. Scientia Sinica:Technologica, 2018, 48(12):1313-1320(in Chinese). [63] 张庭, 姜力, 刘宏. 仿生假手抓握力控制策略[J]. 机器人, 2012, 34(2):190-196. ZHANG T, JIANG L, LIU H. A grasping force control strategy for anthropomorphic prosthetic hand[J]. Robot, 2012, 34(2):190-196(in Chinese). [64] 郭继峰, 王平, 崔乃刚. 空间在轨装配任务规划[M]. 北京:国防工业出版社, 2014. GUO J F, WANG P, CUI N G. On-orbit assembly task planning in space[M]. Beijing:National Defense Industry Press, 2014(in Chinese). [65] 郭继峰, 王平, 崔乃刚. 大型空间桁架结构装配序列的分层规划方法[J]. 哈尔滨工业大学学报, 2008(3):350-353. GUO J F, WANG P, CUI N G. Hierarchical planning method for assembly sequences of large space truss structure[J]. Journal of Harbin Institute of Technology, 2008(3):350-353(in Chinese). [66] 郭继峰, 王平, 程兴, 等. 一种用于空间在轨装配的两级递阶智能规划算法[J]. 宇航学报, 2008,29(3):335-339, 345. GUO J F, WANG P, CHENG X, et al. Two-level hierachical intelligent planning algorithm for on-orbit assembly[J]. Journal of Astronautics, 2008,29(3):335-339, 345(in Chinese). [67] 于晓强, 郑红星. 基于拓展CBBA算法的在轨装配航天器任务分配技术研究[J]. 无人系统技术, 2019(4):9. YU X Q, ZHENG H X. The extended-CBBA-based decentralized auctions algorithm for on-orbit assembly spacecraft task allocation[J]. Unmanned Systems Technology, 2019(4):9(in Chinese). [68] 徐文福, 周瑞兴, 孟得山. 空间机器人在轨更换ORU的力/位混合控制方法[J]. 宇航学报, 2013, 34(10):1353-1361. XU W F, ZHOU R X, MENG D S. A hybrid force/position control method of space robot performing on-orbit ORU replacement[J]. Journal of Astronautics, 2013, 34(10):1353-1361(in Chinese). [69] 刘兆晶. 模块化可展开抛物面天线支撑机构设计与研制[D]. 哈尔滨:哈尔滨工业大学, 2011. LIU Z J. Design and manufacture of supporting structure for modular deployable parabolic antenna[D]. Harbin:Harbin Institute of Technology, 2011(in Chinese). [70] 田大可. 模块化空间可展开天线支撑桁架设计与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2011. TIAN D K. Design and experimental research on truss structure for modular space deployable antenna[D]. Harbin:Harbin Institute of technology, 2011(in Chinese). [71] 时月天, 侯绪研, 饶笑山, 等. 面向空间太阳能电站在轨装配的爬行机器人关键技术[J]. 空间电子技术, 2018, 15(2):106-112. SHI Y T, HOU X Y, RAO X S, el al. Research on the key technology of crawler robot orbiting on space solar power station[J]. Space Electronic Technology, 2018, 15(2):106-112(in Chinese). [72] 马尚君, 刘更, 吴立言, 等. 航天器结构的模块化设计方法综述[J]. 机械科学与技术, 2011, 30(6):960-967. MA S J, LIU G, WU L Y, et al. A review of the modular design methods for spacecraft structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(6):960-967(in Chinese). [73] 罗浩, 刘更, 马尚君, 等. 可在轨展开的航天器模块化结构设计分析平台研究[J]. 机械科学与技术, 2012, 31(1):29-33. LUO H, LIU G, MA S J, et al. Study on the modular design and analysis platform for spacecraft deployable on-orbit[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(1):29-33(in Chinese). [74] 黄攀峰, 常海涛, 鹿振宇, 等. 面向在轨服务的可重构细胞卫星关键技术与展望[J]. 宇航学报, 2016, 37(1):1-10. HUANG P F, CHANG H T, LU Z Y, et al. Key techniques of on-orbit service-oriented reconfigurable cellularized satellite and its prospects[J]. Journal of Astronautics, 2016, 37(1):1-10(in Chinese). [75] 李团结, 马小飞, 华岳, 等. 大型空间天线在轨装配技术[J]. 载人航天, 2013, 19(1):86-90. LI T J, MA X F, HUA Y, et al. On-orbit assembly technology of large space antennas[J]. Manned Spaceflight, 2013, 19(1):86-90(in Chinese). [76] 马小飞, 黄志荣, 华岳, 等. 大型模块化天线反射器在轨组装技术[C]//2014年可展开空间结构学术会议. 北京:中国力学学会, 2014:31. MA X F, HUANG Z R, HUA Y, et al. Assembly technology of large modular antenna reflector[C]//2014 Conference on Deployable Space Structure. Beijing:Chinese Society of Mechanics, 2014:31(in Chinese). [77] 付伟达, 张士峰, 张锐, 等. 小卫星测控的模块化自动测试系统构建[J]. 航天器工程, 2013, 22(2):104-107. FU W D, ZHANG S F, ZHANG R, et al. Construction of modular automatic test systems for small satellite TT & C[J]. Spacecraft Engineering, 2013, 22(2):104-107(in Chinese). [78] 朱嘉琦, 韩哈斯敖其尔, 于鹏, 等. 在轨组装机器人抓取机构设计与控制系统研究[J]. 机械传动, 2019, 43(2):79-84. ZHU J Q, HAN H S A Q R, YU P, et al. Research of design and control system of grab mechanism of on-orbit assembly robot[J]. Journal of Mechanical Transmission, 2019, 43(2):79-84(in Chinese). [79] 王洪亮, 郭亮, 熊琰, 等. 超大口径在轨组装红外望远镜遮阳罩热设计[J]. 红外与激光工程, 2019, 48(12):202-207. WANG H L, GUO L, XIONG Y, et al. Thermal design of ultra-large diameter in-orbit assembly infrared telescope sunshield[J]. Infrared and Laser Engineering, 2019, 48(12):202-207(in Chinese). [80] 丁继锋, 高峰, 钟小平, 等. 在轨建造中的关键力学问题[J]. 中国科学:物理学力学天文学, 2019, 49(2):54-61. DING J F, GAO F, ZHONG X P, et al. The key mechanical problems of on-orbit construction[J]. Scientia Sinica:Physica, Mechanica & Astronomica, 2019, 49(2):54-61(in Chinese). [81] 杨自鹏, 胡声超, 周佑君, 等. 多任务在轨服务模块化智能航天器技术研究[J]. 宇航总体技术, 2019, 3(4):15-20. YANG Z P, HU S C, ZHOU Y J, et al. Research on multi-mission intelligent vehicle on-orbit service technology[J]. Astronautical Systems Engineering Technology, 2019, 3(4):15-20(in Chinese). [82] 李政阳, 云昕, 杨怡欣, 等. 在轨空间智能制造:分布式调度建模与优化[J]. 系统工程理论与实践, 2019, 39(3):705-724. LI Z Y, YUN X, YANG Y X, et al. In-space intelligent manufacturing:Distributed scheduling and optimization[J]. Systems Engineering-Theory & Practice, 2019, 39(3):705-724(in Chinese). [83] 邓雅, 刘维惠, 李晓辉, 等. 一种空间机械臂无视觉在轨柔顺装配方法[J]. 空间控制技术与应用, 2018, 44(6):8-12. DENG Y, LIU W H, LI X H, et al. Space manipulator compliant on-orbit assembly without vision feedback[J]. Aerospace Control and Application, 2018, 44(6):8-12(in Chinese). [84] 张玉良, 张佳朋, 王小丹, 等. 面向航天器在轨装配的数字孪生技术[J]. 导航与控制, 2018, 17(3):75-82. ZHANG Y L, ZHANG J P, WANG X D, et al. Digital twin technology for spacecraft on-orbit assembly[J]. Navigation and Control, 2018, 17(3):75-82(in Chinese). [85] 沈晓凤, 曾令斌, 靳永强, 等. 在轨组装技术研究现状与发展趋势[J]. 载人航天, 2017, 23(2):228-235, 244. SHEN X F, ZENG L B, JIN Y Q, et al. Status and prospect of on-orbit assembly technology[J]. Manned Spaceflight, 2017, 23(2):228-235, 244(in Chinese). [86] BELVIN W K, DOGGETT W R, WATSON J J, et al. In-space structural assembly:Applications and technology[C]//3rd AIAA Spacecraft Structures Conference. Reston:AIAA, 2016:2163. [87] KOUVELIOTOU C, AGOL E, BATALHA N, et al. Enduring quests-daring visions (NASA astrophysics in the next three decades)[J]. arXiv Preprint, arXiv:1401.3741, 2014. [88] HAMILL D, BOWMAN L, GILMAN D A, et al. High leverage technologies for in-space assembly of complex structures[C]//AIAA SPACE. Reston:AIAA, 2016:5397. [89] BOYD I D, BUENCONSEJO R S, PISKORZ D, et al. On-orbit manufacturing and assembly of spacecraft:Opportunities and challenges:P-8335[R]. IDA Science & Technology Institute, 2017. [90] 韩霞. 快速成型技术与应用[M]. 北京:机械工业出版社, 2016. HAN X. Rapid prototyping technology and application[M]. Beijing:China Machine Press, 2016(in Chinese). [91] BELVIN W K, DOGGETT W R, WATSON J J, et al. In-space structural assembly:Applications and technology[C]//3rd AIAA Spacecraft Structures Conference. Reston:AIAA, 2016:2163. [92] 杨正岩, 张佳奇, 高东岳, 等. 航空航天智能材料与智能结构研究进展[J]. 航空制造技术, 2017(17):36-48. YANG Z Y, ZHANG J Q, GAO D Y, et al. Advance of aerospace smart material and structure[J]. Aeronautical Manufacturing Technology, 2017(17):36-48(in Chinese). [93] RANZANI T, GERBONI G, CIANCHETTI M, et al. A bioinspired soft manipulator for minimally invasive surgery[J]. Bioinspiration & Biomimetics, 2015, 10(3):035008. [94] LUO M, TAO W, CHEN F, et al. Design improvements and dynamic characterization on fluidic elastomer actuators for a soft robotic snake[C]//IEEE Conference on Technologies for Practical Robot Applications. Piscataway:IEEE Press, 2014:1-6. |
[1] | JIA Qingxuan, DUAN Jiaqi, CHEN Gang. Uncalibrated visual servo of space robots performing on-orbit assembly alignment task [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 424063-424063. |
[2] | CHU Weimeng, YANG Jinzhao, WU Shu'nan, WU Zhigang. LSTM-based on-orbit identification of inertia tensor for space robot system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(11): 524615-524615. |
[3] | LIU Jinglong, ZHANG Chongfeng, ZOU Huaiwu, LI Ning, WU Linna. On-orbit precise operation control method for flexible joint space robots based on disturbance observer [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(1): 523899-523899. |
[4] | HAN Fei, LIU Fucheng, WANG Zhaolong, DU Xuan, LIU Shanshan, LIU Chaozhen. Multiple line-of-sight angles-only relative navigation by multiple collaborative space robots [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(1): 524174-524174. |
[5] | MENG Guang, HAN Liangliang, ZHANG Chongfeng. Research progress and technical challenges of space robot [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(1): 523963-523963. |
[6] | LI Wenhao, ZHANG Heng, FENG Guanhua. Cooperative teleoperation for multi-master/multi-slave systems with large time-varying delays [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(1): 523896-523896. |
[7] | ZHOU Yiqun, LUO Jianjun, WANG Mingming. Load distribution for space robots after target capture [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(1): 523915-523915. |
[8] | GE Jiahao, LIU Li, DONG Xinxin, TIAN Weiyong, LU Tianhe. Trajectory planning for free floating space robots based on kinodynamic RRT* [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(1): 523877-523877. |
[9] | MENG Zhongjie, HUANG Panfeng, WANG Dongke. In-plane adaptive retrieval method for tethered space robots after target capturing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(12): 4035-4042. |
[10] | Li Junbao;Liu Hua;Zhang Lingmi. OPTIMAL PLACEMENT OF ACTIVE MEMBERS IN ACTIVE VIBRATION CONTROL OF ADAPTIVE TRUSS STRUCTURES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1996, 17(6): 118-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341