ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2019, Vol. 40 ›› Issue (9): 22840-022840.doi: 10.7527/S1000-6893.2019.22840
• Review • Previous Articles Next Articles
SHI Yenan, ZHENG Guolei
Received:
2018-12-06
Revised:
2018-12-29
Online:
2019-09-15
Published:
2019-04-19
Supported by:
CLC Number:
SHI Yenan, ZHENG Guolei. A review of three neural network methods for manufacturing feature recognition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(9): 22840-022840.
[1] | FOUGÈRES A J, OSTROSI E. Intelligent agents for feature modelling in computer aided design[J]. Journal of Computational Design and Engineering, 2018, 5(1):19-40. |
[2] | 赵鹏, 盛步云. 基于切削体分解组合策略的工艺特征识别方法[J]. 华南理工大学学报(自然科学版), 2011, 39(8):30-35. ZHAO P, SHENG B Y. Recognition method of process feature based on delta-volume decomposition and combination strategy[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(8):30-35(in Chinese). |
[3] | ZEHTABAN L, ROLLER D. Automated rule-based system for Opitz feature recognition and code generation from STEP[J]. Computer-Aided Design and Applications, 2016, 13(3):309-319. |
[4] | HAN J, REQUICHA A A. Integration of feature based design and feature recognition[J]. Computer-Aided Design, 1997, 29(5):393-403. |
[5] | WANG J X, LIU S Q. Hopfield neural network-based automatic recognition for 3-D features[C]//Proceedings of 1993 International Joint Conference on Neural Networks. 1993:2121-2124. |
[6] | 齐峰, 谭建荣, 张树有. 基于径向基函数神经网络的特征识别技术研究[J]. 计算机辅助设计与图形学学报, 2002, 14(6):562-565. QI F, TAN J R, ZHANG S Y. Feature recognition based on RBF neural networks[J]. Journal of Computer-Aided Design & Computer Graphics, 2002, 14(6):562-565(in Chinese). |
[7] | ROSENBLATT F. The perceptron:A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6):386-408. |
[8] | SAMARASINGHE S. Neural networks for applied sciences and engineering[M]. New York:Taylor & Francis Group, 2006:206-207. |
[9] | CARPENTER G A, GROSSBERG S. A massively parallel architecture for a self-organizing neural pattern recognition machine[J]. Computer Vision Graphics & Image Processing, 1987, 37(1):54-115. |
[10] | CARPENTER G A, GROSSBERG S. ART2:self-organization of stable category recognition codes for analog input patterns[J]. Applied Optics, 1987, 26(23):4919-4930. |
[11] | LANKALAPALLI K, CHATTERJEE S, CHANG T C. Feature recognition using ART2:A self-organizing neural network[J]. Journal of Intelligent Manufacturing, 1997, 8(3):203-214. |
[12] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2016:2818-2826. |
[13] | FARABET C, COUPRIE C, NAJMAN L, et al. Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(8):1915-1929. |
[14] | HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6):82-97. |
[15] | LI J, WONG H C, LO S L, et al. Multiple object detection by a deformable part-based model and an R-CNN[J]. IEEE Signal Processing Letters, 2018, 25(2):288-292. |
[16] | COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12(1):2493-2537. |
[17] | HUBEL D H, WIESEL T N. Receptive fields of single neurons in the cat's striate cortex[J]. The Journal of Physiology, 1959, 148(3):574-591. |
[18] | FUKUSHIMA K, MIYAKE S. Neocognitron:A new algorithm for pattern recognition tolerant of deformations and shifts in position[J]. Pattern Recognition, 1982, 15(6):455-469. |
[19] | LECUN Y, JACKEL L D, BOTTOU L, et al. Learning algorithms for classification:A comparison on handwritten digit recognition[C]//Proceedings of the International Conference on Artificial Neural Networks, 1995:53-60. |
[20] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[C]//Proceedings of the IEEE, 1998:2278-2323. |
[21] | HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. |
[22] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the International Conference on Neural Information Processing Systems, 2012:1097-1105. |
[23] | ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of Computer Vision-ECCV 2014, 2014:818-833. |
[24] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of International Conference on Learning Representations (ICLR), 2015:1-14. |
[25] | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2015:1-9. |
[26] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778. |
[27] | GUO Y, LIU Y, OERLEMANS A, et al. Deep learning for visual understanding:A review[J]. Neurocomputing, 2016, 187(C):27-48. |
[28] | LIN M, CHEN Q, YAN S. Network in network[C]//Proceedings of the International Conference on Learning Representations, 2014:1-10. |
[29] | SERMANET P, CHINTALA S, LECUN Y. Convolutional neural networks applied to house numbers digit classification[C]//Proceedings of 21st International Conference on Pattern Recognition, 2012:3288-3291. |
[30] | YU D, WANG H, CHEN P, et al. Mixed pooling for convolutional neural networks[C]//Proceedings of International Conference on Rough Sets and Knowledge Technology, 2014:364-375. |
[31] | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of 14th International Conference on Artificial Intelligence and Statistics. Brookline, MA:Microtome Publishing, 2011:315-323. |
[32] | MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of 30th International Conference on Machine Learning, 2013:1-6. |
[33] | HE K, ZHANG X, REN S, et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of IEEE International Conference on Computer Vision, 2016:1026-1034. |
[34] | LI W D, ONG S K, NEE A Y C. Recognition of overlapping machining features based on hybrid artificial intelligent techniques[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2000, 214(8):739-744. |
[35] | NEZIS K, VOSNIAKOS G. Recognizing 21/2D shape features using a neural network and heuristics[J]. Computer-Aided Design, 1997, 29(7):523-539. |
[36] | GUAN X S, MENG G W, YUAN X H. Machining feature recognition of part from STEP file based on ANN[C]//Proceedings of the International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010:54-57. |
[37] | PRABHAKAR S, HENDERSON M R. Automatic form-feature recognition using neural-network-based techniques on B-rep of solid models[J]. Computer-Aided Design, 1992, 24(7):381-393. |
[38] | 胡小平, 杨世锡, 谭建荣. 基于人工神经网络识别的特征自组织技术[J]. 计算机辅助设计与图形学学报, 1999, 11(4):335-339. HU X P, YANG S X, TAN J R. The method for feature self-organization based on feature recognition with neural network[J]. Journal of Computer Aided Design and Computer Graphics, 1999, 11(4):335-339(in Chinese). |
[39] | DING L, YUE Y. Novel ANN-based feature recognition incorporating design by features[J]. Computers in Industry, 2004, 55(2):197-222. |
[40] | BABIĆ B R, NEŠIĆ N, MILJKOVIĆ Z. Automatic feature recognition using artificial neural networks to integrate design and manufacturing:Review of automatic feature recognition systems[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2011, 25(3):289-304. |
[41] | HWANG J L, HENDERSON M R. Applying the perceptron to three dimensional feature recognition[J]. Journal of Design Manufacture, 1992, 2(4):187-198. |
[42] | ONWUBOLU G C. Manufacturing features recognition using backpropagation neural networks[J]. Journal of Intelligent Manufacturing, 1999, 10(3-4):289-299. |
[43] | ONWUBOLU G C. Design of parts for cellular manufacturing using neural network-based approach[J]. Journal of Intelligent Manufacturing, 1999, 10(3-4):251-265. |
[44] | HAO Y T, CHI Y M. Research on ANN-based feature recognition and manufacturing behavior sequence[C]//Proceedings of Second International Conference on Mechanic Automation and Control Engineering, 2011:7568-7574. |
[45] | MARQUEZ M, WHITE A, GILL R. A hybrid neural network-feature-based manufacturability analysis of mould reinforced plastic parts[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2001, 215(8):1065-1079. |
[46] | SUNIL V B, PANDE S S. Automatic recognition of machining features using artificial neural networks[J]. International Journal of Advanced Manufacturing Technology, 2009, 41(9-10):932-947. |
[47] | ÖZTVRK N, ÖZTVRK F. Neural network based non-standard feature recognition to integrate CAD and CAM[J]. Computers in Industry, 2001, 45(2):123-135. |
[48] | ÖZTVRK N, ÖZTVRK F. Hybrid neural network and genetic algorithm based machining feature recognition[J]. Journal of Intelligent Manufacturing, 2004, 15(3):287-298. |
[49] | JIAN C F, LI M, QIU K Y, et al. An improved NBA-based STEP design intention feature recognition[J]. Future Generation Computer Systems, 2018, 88:357-362. |
[50] | BALU A, LORE K G, YOUNG G, et al. A deep 3D convolutional neural network based design for manufacturability framework[EB/OL]. (2016-12-07)[2018-12-06]. https://arxiv.org/pdf/1612.02141v1.pdf. |
[51] | GHADAI S, BALU A, SARKAR S, et al. Learning localized features in 3D CAD models for manufacturability analysis of drilled holes[J]. Computer Aided Geometric Design, 2018, 62:263-275. |
[52] | ZHANG Z B, JAISWAL P, RAI R. FeatureNet:machining feature recognition based on 3D convolution neural network[J]. Computer-Aided Design, 2018, 101:12-22. |
[53] | ZULKIFLI A H, MEERAN S. Decomposition of interacting features using a Kohonen self-organizing feature map neural network[J]. Engineering Applications of Artificial Intelligence, 1999, 12(1):59-78. |
[54] | MEERAN S, ZULKIFLI A H. Recognition of simple and complex interacting non-orthogonal features[J]. Pattern Recognition, 2002, 35(11):2341-2353. |
[55] | WHITE H. 1989. Learning in neural networks:A statistical perspective[J]. Neural Computation, 1989, 1(4):425-464. |
[56] | 谭昌柏, 周来水, 安鲁陵, 等. 逆向工程中基于BP网络的自动特征识别器的设计与实现[J]. 计算机辅助设计与图形学学报, 2005, 17(10):2305-2311. TAN C B, ZHOU L S, AN L L, et al. Design and implementation of an automatic feature recognizer based on BP network in reverse engineering[J]. Journal of Computer-Aided Design and Computer Graphics, 2005, 17(10):2305-2311(in Chinese). |
[57] | YI R Q, LI W H, WANG D, et al. Feature recognition based on graph decomposition and neural network[C]//Proceedings of Third International Conference on Convergence and Hybrid Information Technology, 2008:864-868. |
[58] | SHIN H, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection:CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5):1285-1298. |
[59] | HAN D, LIU Q, FAN W. A new image classification method using CNN transfer learning and web data augmentation[J]. Expert Systems with Applications, 2018, 95:43-56. |
[60] | SHAO X Y, CHEN Z M, GAO L. A framework for manufacturing features recognition using a neural network trained by PSO algorithm[C]//Proceedings of Conference on Computational Engineering in Systems Applications, 2007:1371-1374. |
[61] | ZHA J, LU C, LV H G. A rare feature recognition approach based on Fuzzy ART neural networks[C]//Proceedings of Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing. Washington, D.C.:IEEE, 2009:57-62. |
[62] | 陶品, 张钹, 叶榛. 三维模型特征识别中的神经网络方法[J]. 计算机集成制造系统, 2002, 8(11):912-918. TAO P, ZHANG B, YE Z. Neural network method in 3D model feature recognition[J]. Computer Integrated Manufacturing Systems, 2002, 8(11):912-918(in Chinese). |
[63] | VERMA A K, RAJOTIA S. A review of machining feature recognition methodologies[J]. International Journal of Computer Integrated Manufacturing, 2010, 23(4):353-368. |
[64] | DING L, MATTHEWS J. A contemporary study into the application of neural network techniques employed to automate CAD/CAM integration for die manufacture[J]. Computers & Industrial Engineering, 2009, 57(4):1457-1471. |
[1] | Zhongzhi LI, Jinyi MA, Jianliang AI, Yiqun DONG. Fault detection and classification of aerospace sensors using deep neural networks finetuned from VGG16 [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727615-727615. |
[2] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[3] | Lianzi WANG, Ling WANG, Daiyin ZHU. An ISAR autofocus imaging algorithm based on FCN and transfer learing [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 328172-328172. |
[4] | HAN Songyu, SHAO Haidong, JIANG Hongkai, ZHANG Xiaoyang. Intelligent fault diagnosis of aero-engine high-speed bearings using enhanced CNN [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625479-625479. |
[5] | LIU Jiaqi, FENG Yunwen, LU Cheng, XUE Xiaofeng, PAN Weihuang. Safety analysis of aero-engine operation based on intelligent neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625375-625375. |
[6] | YI Jianmiao, DENG Feng, QIN Ning, LIU Xueqiang. Fast prediction of transonic flow field using deep learning method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526747-526747. |
[7] | CAI Guobiao, ZHANG Baiyi, HE Bijiao, WENG Huiyan, LIU Lihui. Intelligent computation of vacuum plume [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527352-527352. |
[8] | WANG Hui, JIA Zikai, JIN Ren, LIN Defu, FAN Junfang, XU Chao. Cooperative object detection in UAV-based vision-guided docking [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 324854-324854. |
[9] | XIA Peng, YANG Te, XU Jiang, WANG Le, YANG Zhichun. Reversed time sequence dynamic load identification method using time delay neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 224452-224452. |
[10] | LI Hongguang, YU Ruonan, DING Wenrui. Research development of small object traching based on deep learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 24691-024691. |
[11] | DING Wenrui, LIU Chunlei, LI Yue, ZHANG Baochang. Binary convolutional neural network: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 24504-024504. |
[12] | WANG Zelin, JI Ritian, HUI Xinyu, DING Chen, WANG Hui, BAI Junqiang. L-shaped directional heat transfer based on deep learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 124242-124242. |
[13] | LI Zuobiao, WEN Fengbo, TANG Xiaolei, SU Liangjun, WANG Songtao. Prediction of single-row hole film cooling performance based on deep learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524331-524331. |
[14] | JIANG Bo, QU Ruokun, LI Yandong, LI Chenglong. Object detection in UAV imagery based on deep learning: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524519-524519. |
[15] | ZHANG Zhichao, GAO Taiyuan, ZHANG Lei, TUO Shuangfen. Aeroheating agent model based on radial basis function neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524167-524167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341