Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (15): 528716-528716.doi: 10.7527/S1000-6893.2023.28716
• Reviews • Previous Articles Next Articles
Jianjun WU(), Zejun HU, Zhicheng HE, Yu ZHANG, Yang OU, Zhengxue MA, Qinhui PENG, Yuxuan ZHONG
Received:
2023-03-17
Revised:
2023-04-07
Accepted:
2023-04-28
Online:
2023-08-15
Published:
2023-05-06
Contact:
Jianjun WU
E-mail:jjwu@nudt.edu.cn
Supported by:
CLC Number:
Jianjun WU, Zejun HU, Zhicheng HE, Yu ZHANG, Yang OU, Zhengxue MA, Qinhui PENG, Yuxuan ZHONG. Research progress of electrically controlled solid propulsion technology[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528716-528716.
1 | 田维平, 王立武, 王伟. 固体火箭发动机技术发展和面临的关键技术问题[J]. 固体火箭技术, 2021, 44(1): 4-8. |
TIAN W P, WANG L W, WANG W. Technological development and key technical problems in solid rocket motors[J]. Journal of Solid Rocket Technology, 2021, 44(1): 4-8 (in Chinese). | |
2 | 武丹, 陈文杰, 司学龙, 等. 大型固体火箭发动机发展趋势及关键技术分析[J]. 武汉大学学报(工学版), 2021, 54(2): 102-107. |
WU D, CHEN W J, SI X L, et al. Research on development trend and key technologies of large solid rocket motor[J]. Engineering Journal of Wuhan University, 2021, 54(2): 102-107 (in Chinese). | |
3 | 任庆华, 刘双, 张海龙, 等. 固体小运载火箭发动机的现状及发展趋势分析[J]. 现代防御技术, 2016, 44(5): 40-45. |
REN Q H, LIU S, ZHANG H L, et al. Status and evolution trend analysis of solid small launch rocket[J]. Modern Defence Technology, 2016, 44(5): 40-45 (in Chinese). | |
4 | 庞爱民, 黎小平. 固体推进剂技术的创新与发展规律[J]. 含能材料, 2015, 23(1): 3-6. |
PANG A M, LI X P. Innovation and development law of solid propellant technology[J]. Chinese Journal of Energetic Materials, 2015, 23(1): 3-6 (in Chinese). | |
5 | 侯晓, 付鹏, 武渊. 固体火箭发动机能量管理技术及其新进展[J]. 固体火箭技术, 2017, 40(1): 1-6, 23. |
HOU X, FU P, WU Y. Energy management technology of SRM and its development[J]. Journal of Solid Rocket Technology, 2017, 40(1): 1-6, 23 (in Chinese). | |
6 | 陆正亮, 张翔, 于永军, 等. 使用固体火箭发动机的快速机动卫星质量矩控制研究[J]. 推进技术, 2017, 38(5): 1165-1172. |
LU Z L, ZHANG X, YU Y J, et al. Study on satellite mass moment control for fast orbit maneuver using solid rocket motor[J]. Journal of Propulsion Technology, 2017, 38(5): 1165-1172 (in Chinese). | |
7 | 李娟, 李江, 王毅林, 等. 喉栓式变推力发动机性能研究[J]. 固体火箭技术, 2007, 30(6): 505-509. |
LI J, LI J, WANG Y L, et al. Study on performance of pintle controlled thrust solid rocket motor[J]. Journal of Solid Rocket Technology, 2007, 30(6): 505-509 (in Chinese). | |
8 | 汤亮, 邓康清, 余小波. 多脉冲固体火箭发动机发展现状[C]∥第四届空天动力联合会议论文集, 2019: 62-68. |
TANG L, DENG K Q, YU X B. Development status of multi-pulse solid rocket motor[C]∥Proceedings of 4th Joint Conference on Aerospace Power, 2019: 62–68 (in Chinese). | |
9 | 李悦, 胡春波, 胡加明, 等. 粉末火箭发动机研究进展[J]. 推进技术, 2018, 39(8): 1681-1695. |
LI Y, HU C B, HU J M, et al. Progress of powder rocket engine technology[J]. Journal of Propulsion Technology, 2018, 39(8): 1681-1695 (in Chinese). | |
10 | 于金山, 李卓. 凝胶(膏体)推进剂火箭发动机研究与发展综述[C]∥第三届空天动力联合会议论文集, 2018: 30-34. |
YU J S, LI Z. Review of research and development of gel (paste) propellant rocket engines[C]∥Proceedings of 3rd Joint Conference on Aerospace Power, 2018: 30-34 (in Chinese). | |
11 | 段卜仁, 章皓男, 华佐豪, 等. 一种燃速可调的光控固体推进剂燃烧特性[J]. 含能材料, 2021, 29(7): 584-591. |
DUAN B R, ZHANG H N, HUA Z H, et al. Combustion characteristics of the laser-controlled solid propellant with adjustable burning rate[J]. Chinese Journal of Energetic Materials, 2021, 29(7): 584-591 (in Chinese). | |
12 | 何志成, 夏智勋, 胡建新, 等. 电控固体推进剂制备方法及性能研究进展[J]. 含能材料, 2020, 28(12): 1190-1199. |
HE Z C, XIA Z X, HU J X, et al. Review on preparation methods and properties of electrically controlled solid propellants[J]. Chinese Journal of Energetic Materials, 2020, 28(12): 1190-1199 (in Chinese). | |
13 | 程健, 张泽华, 李福伟, 等. 微波在含能材料中的应用研究进展[J]. 含能材料, 2023, 31(2): 201-212. |
CHENG J, ZHANG Z H, LI F W, et al. Review on microwave application in energetic materials[J]. Chinese Journal of Energetic Materials, 2023, 31(2): 201-212 (in Chinese). | |
14 | KATZAKIAN A, CHEUNG H, GRIX C E, et al. Solid solution vehicle airbag clean gas generator propellant: US5847315[P]. 1998-12-08. |
15 | KATZAKIAN A, GRIX C. High performance electrically controlled solution solid propellant: US20120103479[P]. 2012-05-03. |
16 | GRIX C E, SAWKA W N. Family of modifiable high performance electrically controlled propellants and explosives: US8888935[P]. 2014-11-18. |
17 | 张伟, 鲍立荣, 沈瑞琪, 等. 一种高能高力学性能电控固体推进剂: CN110759800A[P]. 2020-02-07. |
ZHANG W, BAO L R, SHEN R Q, et al. Electrically controlled solid propellant with high energy and high mechanical properties: CN110759800A[P]. 2020-02-07 (in Chinese). | |
18 | BAO L R, ZHANG W, ZHANG X J, et al. Impact of MWCNT/Al on the combustion behavior of hydroxyl ammonium nitrate (HAN)-based electrically controlled solid propellant[J]. Combustion and Flame, 2020, 218: 218-228. |
19 | 黄印, 张小平, 庞爱民, 等. 一种电控固体推进剂及其制备方法: CN109942356B[P]. 2022-03-04. |
HUANG Y, ZHANG X P, PANG A M, et al. An electrically controlled solid propellant and its preparation method: CN109942356B[P]. 2022-03-04 (in Chinese). | |
20 | 黄印, 张小平, 庞爱民, 等. 新型智能化电控固体推进剂技术研究进展[C]∥第四届空天动力联合会议论文集. 2019: 36-48. |
HUANG Y, ZHANG X P, PANG A M, et al. Research progress of new intelligent electronically controlled solid propellant technology∥Proceedings of 4th Joint Conference on Aerospace Power. 2019: 36-48 (in Chinese). | |
21 | 黄印, 陈宗山, 王拯, 等. 一种高强度电控固体推进剂: CN106365935A[P]. 2017-02-01. |
HUANG Y, CHEN Z S, WANG Z, et al. A high strength electrically controlled solid propellant: CN106365935A[P]. 2017-02-01 (in Chinese). | |
22 | 任士栋. 可控推力固体推进剂研究现状及三维聚乙烯醇凝胶合成[D]. 哈尔滨: 哈尔滨工业大学, 2020: 22-32. |
REN S D. Research status of controllable thrust solid propellant and synthesis of three-dimensional polyvinyl alcohol gel[D]. Harbin: Harbin Institute of Technology, 2020: 22-32 (in Chinese). | |
23 | VILLARREAL J K, LOEHR R D. Electrically operated propellants: US20140174313[P]. 2014-06-26. |
24 | DANFORTH J C, SUMMERS M H, GARRETT D G. Method of producing solid propellant element: US10023505[P]. 2018-07-17. |
25 | 胡建新, 李洋, 何志成, 等. 电控固体推进剂热分解和燃烧性能研究[J]. 推进技术, 2018, 39(11): 2588-2594. |
HU J X, LI Y, HE Z C, et al. Study on thermal decomposition and combustion performance of electrically controlled solid propellant[J]. Journal of Propulsion Technology, 2018, 39(11): 2588-2594 (in Chinese). | |
26 | HE Z C, XIA Z X, HU J X, et al. Lithium-perchlorate/polyvinyl-alcohol-based aluminized solid propellants with adjustable burning rate[J]. Journal of Propulsion and Power, 2019, 35(3): 512-519. |
27 | 何志成, 夏智勋, 胡建新, 等. 铝粉对高氯酸盐基电控固体推进剂感度的影响[J]. 含能材料, 2020, 28(1): 52-55. |
HE Z C, XIA Z X, HU J X, et al. Effect of aluminum powder on sensitivity of perchlorate-based electrical controlling solid propellant[J]. Chinese Journal of Energetic Materials, 2020, 28(1): 52-55 (in Chinese). | |
28 | GNANAPRAKASH K, YANG M, YOH J J. Thermal decomposition behaviour and chemical kinetics of tungsten based electrically controlled solid propellants[J]. Combustion and Flame, 2022, 238: 111752. |
29 | GOBIN B, HARVEY N, YOUNG G. Combustion characteristics of electrically controlled solid propellants using polymer electrolytes[J]. Combustion and Flame, 2022, 244: 112291. |
30 | 李纲, 王健, 任晓婷, 等. 固体推进剂氧化剂的共晶改性研究进展[J]. 固体火箭技术, 2021, 44(5): 622-629. |
LI G, WANG J, REN X T, et al. Research progress of co-crystal modification of solid propellant oxidants[J]. Journal of Solid Rocket Technology, 2021, 44(5): 622-629 (in Chinese). | |
31 | 王倩, 刘庆, 莫顺聘, 等. 凝胶聚合物电解质研究进展[J]. 中国塑料, 2021, 35(10): 147-153. |
WANG Q, LIU Q, MO S P, et al. Research progress of gel polymer electrolyte[J]. China Plastics, 2021, 35(10): 147-153 (in Chinese). | |
32 | WANG S Z, LYU J Y, HE W, et al. Thermal decomposition and combustion behavior of ion conductive PEO-PAN based energetic composites[J]. Combustion and Flame, 2021, 230: 111421. |
33 | 李雅津, 谢五喜, 刘运飞, 等. ADN及其固体推进剂燃烧特性的研究进展[J]. 火炸药学报, 2021, 44(2): 130-138. |
LI Y J, XIE W X, LIU Y F, et al. Research progress on combustion characteristics of ADN and ADN-based propellants[J]. Chinese Journal of Explosives & Propellants, 2021, 44(2): 130-138 (in Chinese). | |
34 | 张伟, 王志文, 鲍立荣, 等. 一种低点火延迟时间ADN基电控固体推进剂及其制备方法: CN114835535A[P]. 2022-08-02. |
ZHANG W, WANG Z W, BAO L R, et al. A kind of low ignition delay time ADN-based electronically controlled solid propellant and its preparation method: CN114835535A[P]. 2022-08-02 (in Chinese). | |
35 | MA X Y, JIN S H, XIE W X, et al. A novel green electrically controlled solid propellant with good electrical response and high energy performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128550. |
36 | HIATT A T. Evaluation of electric solid propellant responses to electrical factors and electrode configurations[D]. Huntsville: The University of Alabama in Huntsville, 2018. |
37 | HIATT A, FREDERICK R A. Laboratory experimentation and basic research investigating electric solid propellant electrolytic characteristics[C]∥Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016. |
38 | SUMMERS M H, VILLARREAL J K, LANGHENRY M T, et al. Electrode ignition and control of electrically operated propellants: US20180003130[P]. 2018-01-04. |
39 | DULLIGAN M, LAKE J, ADKISON P, et al. Electrically controlled extinguishable solid propellant motors: US20080092521[P]. 2008-04-24. |
40 | DULLIGAN M, LAKE J, ADKISON P, et al. Methods of controlling solid propellant ignition, combustion, and extinguishment: US20080087003[P]. 2008-04-17. |
41 | 王新强. 电控固体推进剂动力装置技术研究[D]. 西安: 航天动力技术研究院, 2017: 13-21. |
WANG X Q. Research on electronically controlled solid propellant power plant [D]. Xi’an: Aerospace Propulsion Technology Research Institute, 2017: 13-21 (in Chinese). | |
42 | 王新强, 邓康清, 李洪旭, 等. 电控固体推进剂点火技术研究[J]. 固体火箭技术, 2017, 40(3): 313-318. |
WANG X Q, DENG K Q, LI H X, et al. Experimental investigation of electrically stimulated ignition characteristics of electric solid propellant[J]. Journal of Solid Rocket Technology, 2017, 40(3): 313-318 (in Chinese). | |
43 | 仝瑞杰, 王志强, 邹涛, 等. 基于正负交错螺旋型单端面电极的电控固体发动机试验验证[C]∥第六届空天动力联合会议论文集, 2022: 5-12. |
TONG R J, WANG Z Q, ZOU T, et al. Test verification of electronically controlled solid engine based on positive and negative staggered spiral single-ended face electrodes[C]∥Proceedings of 6th Joint Conference on Aerospace Power, 2022: 5-12 (in Chinese). | |
44 | 仝瑞杰, 魏晓婷, 杨振华, 等. 一种用于电控固体火箭发动机的电极装置: CN112160849A[P]. 2021-01-01. |
TONG R J, WEI X T, YANG Z H, et al. An electrode device for electronically controlled solid rocket engines: CN112160849A[P]. 2021-01-01 (in Chinese). | |
45 | BAO L R, WANG H, WANG Z W, et al. Controllable ignition, combustion and extinguishment characteristics of HAN-based solid propellant stimulated by electric energy[J]. Combustion and Flame, 2022, 236: 111804. |
46 | LI Y, XIA Z X, MA L K, et al. Ignition and extinction characteristics of electrically controlled solid propellants[J]. Journal of Propulsion and Power, 2023, 39(3): 340-350. |
47 | LI Y, XIA Z X, HU J X, et al. Experimental investigation of the ignition and combustion characteristics of electrically controlled solid propellant[J]. Acta Astronautica, 2021, 184: 167-179. |
48 | GNANAPRAKASH K, YOH J J. Understanding the pyroelectric combustion behaviour of metallized electrically controlled solid propellants[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5677-5686. |
49 | WANG Z W, XIE H M, XIANG S J, et al. Multi-stage combustion characteristics of sodium perchlorate/lithium perchlorate-based electrically controlled solid propellant[J]. Chemical Engineering Journal, 2023, 456: 140958. |
50 | ZAMIR I, BEN-REUVEN M, GANY A, et al. Investigation of electrically controlled ammonium nitrate-epoxy solid propellant at high pressures[J]. Propellants, Explosives, Pyrotechnics, 2021, 46(3): 477-483. |
51 | DENNY M D. Measurement of solid rocket propellant burning rate using X-ray imaging[D]. Huntsville: The University of Alabama in Huntsville, 2015: 75-91. |
52 | 黄印, 张小平, 庞爱民, 等. 微推进器电控固体推进剂常压点火燃烧效率影响因素研究[J]. 固体火箭技术, 2022, 45(5): 703-713. |
HUANG Y, ZHANG X P, PANG A M, et al. Influence factors of ignition combustion efficiency of electrically controlled solid propellant for micro-thruster at atmospheric pressure[J]. Journal of Solid Rocket Technology, 2022, 45(5): 703-713 (in Chinese). | |
53 | 王新强, 邓康清, 李洪旭, 等. 一种电控固体推进剂燃速测试装置: CN206132718U[P]. 2017-04-26. |
WANG X Q, DENG K Q, LI H X, et al. An electronically controlled solid propellant combustion rate test device: CN206132718U[P]. 2017-04-26 (in Chinese). | |
54 | 鲍立荣, 汪辉, 王志文, 等. HAN基电控固体推进剂电热耦合特性及燃烧特性实验研究[J]. 推进技术, 2021, 42(6): 1410-1417. |
BAO L R, WANG H, WANG Z W, et al. Experimental study on electrothermal coupling and combustion characteristics of HAN-based electrically controlled solid propellant[J]. Journal of Propulsion Technology, 2021, 42(6): 1410-1417 (in Chinese). | |
55 | BAO L R, WANG H, ZHENG T T, et al. Exploring the influences of conductive graphite on hydroxylammonium nitrate (HAN)-based electrically controlled solid propellant[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(11): 1790-1798. |
56 | 梁基照. 高分子复合材料导电学[M]. 广州: 广东科技出版社, 2019. |
LIANG J Z. Conductivity of polymer composites[M]. Guangzhou: Guangdong Science & Technology Press, 2019 (in Chinese). | |
57 | 益小苏. 复合导电高分子材料的功能原理[M]. 北京: 国防工业出版社, 2004. |
YI X S. Function principle of filled conductive polymer composites[M]. Beijing: National Defense Industry Press, 2004 (in Chinese). | |
58 | 杨勇. 固态电化学[M]. 北京: 化学工业出版社, 2017. |
YANG Y. Solid state electrochemistry[M]. Beijing: Chemical Industry Press, 2017 (in Chinese). | |
59 | 程红波, 陶博文, 黄印, 等. 国外电控可熄火固体推进剂技术研究进展[J]. 化学推进剂与高分子材料, 2016, 14(6): 1-6. |
CHENG H B, TAO B W, HUANG Y, et al. Research progress in technology of electrically controlled extinguishable solid propellant abroad[J]. Chemical Propellants & Polymeric Materials, 2016, 14(6): 1-6 (in Chinese). | |
60 | 鲍立荣, 张伟, 陈永义, 等. HAN基电控固体推进剂的热分解和电导率特性[J]. 含能材料, 2019, 27(9): 743-748. |
BAO L R, ZHANG W, CHEN Y Y, et al. Thermal decomposition and conductivity characteristics of HAN-based electrically controlled solid propellants[J]. Chinese Journal of Energetic Materials, 2019, 27(9): 743-748 (in Chinese). | |
61 | WINIE T, AROF A K, THOMAS S. Polymer electrolytes: Characterization techniques and energy applications[M]. Weinheim: Wiley-VCH, 2019. |
62 | ZHOU X Y, FU J L, LI Z, et al. Research progress on solid polymer electrolytes[J]. Chinese Science Bulletin, 2022, 67(9): 842-859. |
63 | SUN Z J, DING S J. PEO-based polymer electrolytes in lithium ion batteries[J]. Chinese Science Bulletin, 2018, 63(22): 2280-2295. |
64 | 孟楠. 锂空气电池聚合物电解质及其与电极界面稳定性的研究[D]. 北京: 北京科技大学, 2022: 55-69. |
MENG N. Polymer electrolyte for Li-air battery and its stabilization integration with electrodes[D]. Beijing: University of Science and Technology Beijing, 2022: 55-69 (in Chinese). | |
65 | 鲍立荣, 汪辉, 陈永义, 等. 硝酸羟胺基绿色推进剂研究进展[J]. 含能材料, 2020, 28(12): 1200-1210. |
BAO L R, WANG H, CHEN Y Y, et al. Review on hydroxylammonium nitrate based green propellant[J]. Chinese Journal of Energetic Materials, 2020, 28(12): 1200-1210 (in Chinese). | |
66 | CHAI W S, CHEAH K H, WU M H, et al. A review on hydroxylammonium nitrate (HAN) decomposition techniques for propulsion application[J]. Acta Astronautica, 2022, 196: 194-214. |
67 | 陈君, 张涛, 刘瀛龙. 硝酸羟胺基推进系统研究与应用进展[J]. 兵器装备工程学报, 2018, 39(12): 25-30. |
CHEN J, ZHANG T, LIU Y L. Research and application progress of high performance green hydroxylamine nitrate based aerospace propulsion system[J]. Journal of Ordnance Equipment Engineering, 2018, 39(12): 25-30 (in Chinese). | |
68 | MENG H A, KHARE P, RISHA G, et al. Decomposition and ignition of HAN-based monopropellants by electrolysis[C]∥Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
69 | KHARE P, YANG V, MENG H, et al. Thermal and electrolytic decomposition and ignition of HAN-water solutions[J]. Combustion Science and Technology, 2015, 187(7): 1065-1078. |
70 | CHAI W S, CHEAH K H, MENG H, et al. Experimental and analytical study on electrolytic decomposition of HAN-water solution using graphite electrodes[J]. Journal of Molecular Liquids, 2019, 293: 111496. |
71 | KOH K S, CHIN J, WAHIDA KU CHIK T F. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN) solutions[J]. Propulsion and Power Research, 2013, 2(3): 194-200. |
72 | CHUNG K, ROZUMOV E, KAMINSKY D, et al. Development of electrically controlled energetic materials (ECEM)[J]. ECS Transactions, 2013, 50(40): 59-66. |
73 | BAIRD J K, LANG J R, HIATT A T, et al. Electrolytic combustion in the polyvinyl alcohol plus hydroxylammonium nitrate solid propellant[J]. Journal of Propulsion and Power, 2017, 33(6): 1589-1590. |
74 | BAIRD J K, FREDERICK R A. Thermochemistry of combustion in polyvinyl alcohol + hydroxylammonium nitrate[J]. Aerospace, 2021, 8(5): 142. |
75 | BAIRD J K, HUANG S, FREDERICK R A. Space charge limited conduction in polyvinyl alcohol + hydroxylammonium nitrate solid propellant[J]. Journal of Propulsion and Power, 2020, 36(3): 479-484. |
76 | 段炼, 胡建新, 李洋, 等. 通电启动时固体推进剂电流密度仿真分析[J]. 固体火箭技术, 2018, 41(1): 28-34. |
DUAN L, HU J X, LI Y, et al. Current density simulation of electrically controlled solid propellant when energized[J]. Journal of Solid Rocket Technology, 2018, 41(1): 28-34 (in Chinese). | |
77 | 段炼. 电控固体推进技术探索研究[D]. 重庆: 重庆大学, 2019: 32-35. |
DUAN L. Exploration and research on electrically controlled solid propulsion technology[D]. Chongqing: Chongqing University, 2019: 32-35 (in Chinese). | |
78 | 胡松启, 康博, 张研, 等. 二茂铁类衍生物对HAN/PVA热分解影响研究[J]. 火炸药学报, 2020, 43(2): 149-154, 160. |
HU S Q, KANG B, ZHANG Y, et al. Effect of ferrocene derivatives on the thermal decomposition of HAN/PVA[J]. Chinese Journal of Explosives & Propellants, 2020, 43(2): 149-154, 160 (in Chinese). | |
79 | HE Z C, XIA Z X, HU J X, et al. Thermal decomposition and kinetics of electrically controlled solid propellant through thermogravimetric analysis[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(3): 2187-2195. |
80 | WEI C Y, ROGERS W J, MANNAN M S. Thermal decomposition hazard evaluation of hydroxylamine nitrate[J]. Journal of Hazardous Materials, 2006, 130(1-2): 163-168. |
81 | 程红波, 王拯, 陶博文, 等. 硝酸羟胺热分解特性及其稳定化技术研究[J]. 化学推进剂与高分子材料, 2018, 16(4): 80-85. |
CHENG H B, WANG Z, TAO B W, et al. Study on thermal decomposition characteristics of hydroxylammonium nitrate and its stabilization technology[J]. Chemical Propellants & Polymeric Materials, 2018, 16(4): 80-85 (in Chinese). | |
82 | 王新强, 邓康清, 李洪旭, 等. HAN基绿色推进剂点火技术研究进展[J]. 火箭推进, 2017, 43(2): 72-76. |
WANG X Q, DENG K Q, LI H X, et al. Research progress on ignition of HAN-based green propellant[J]. Journal of Rocket Propulsion, 2017, 43(2): 72-76 (in Chinese). | |
83 | 刘建国, 安振涛, 张倩, 等. Fe3+掺杂对硝酸羟胺热稳定性的影响及其机理[J]. 火炸药学报, 2017, 40(1): 53-58. |
LIU J G, AN Z T, ZHANG Q, et al. Effects of doping of Fe3+ on the thermal stability of hydroxylamine nitrate and its mechanism[J]. Chinese Journal of Explosives & Propellants, 2017, 40(1): 53-58 (in Chinese). | |
84 | AMROUSSE R, HORI K, FETIMI W, et al. HAN and ADN as liquid ionic monopropellants: Thermal and catalytic decomposition processes[J]. Applied Catalysis B: Environmental, 2012, 127: 121-128. |
85 | LEE H, LITZINGER T A. Thermal decomposition of HAN-based liquid propellants[J]. Combustion and Flame, 2001, 127(4): 2205-2222. |
86 | LEE Y J, LITZINGER T A. Combustion chemistry of HAN, TEAN, and XM46[J]. Combustion Science and Technology, 1999, 141(1-6): 19-36. |
87 | 刘建国, 安振涛, 张倩, 等. 硝酸羟胺的热稳定性评估及热分解机理研究[J]. 材料导报, 2017, 31(4): 145-152. |
LIU J G, AN Z T, ZHANG Q, et al. Thermal stability evaluation and thermal decomposition mechanism of hydroxylamine nitrate[J]. Materials Review, 2017, 31(4): 145-152 (in Chinese). | |
88 | ESPARZA A A. Thermoanalytical studies on the decomposition of energetic ionic liquids[D]. El Paso: The University of Texas at El Paso, 2020: 51-64. |
89 | ESPARZA A A, FERGUSON R E, CHOUDHURI A, et al. Thermoanalytical studies on the thermal and catalytic decomposition of aqueous hydroxylammonium nitrate solution[J]. Combustion and Flame, 2018, 193: 417-423. |
90 | OXLEY J C, BROWER K R. Thermal decomposition of hydroxylamine nitrate[C]∥1988 Los Angeles Symposium, 1988. |
91 | LEE H, LITZINGER T A. Chemical kinetic study of HAN decomposition[J]. Combustion and Flame, 2003, 135(1-2): 151-169. |
92 | LIU J G, AN Z T, ZHANG Q A, et al. Thermal decomposition of hydroxylamine nitrate studied by differential scanning calorimetry analysis and density functional theory calculations[J]. Progress in Reaction Kinetics and Mechanism, 2017, 42(4): 334-343. |
93 | 闫科, 张彦威, 王永昌, 等. 高氯酸锂分解动力学研究[J]. 固体火箭技术, 2013, 36(3): 353-357, 367. |
YAN K, ZHANG Y W, WANG Y C, et al. Kinetic study of lithium perchlorate decomposition mechanism[J]. Journal of Solid Rocket Technology, 2013, 36(3): 353-357, 367 (in Chinese). | |
94 | 闫科. 高氯酸锂非均相催化分解实验研究[D]. 杭州: 浙江大学, 2015. |
YAN K. Experimental study on heterogeneous catalytic decomposition of lithium perchlorate[D]. Hangzhou: Zhejiang University, 2015 (in Chinese). | |
95 | 何志成. 改性PVA基电控固体推进剂及性能研究[D]. 长沙: 国防科技大学, 2021: 26-56. |
HE Z C. Research on composition/performance of modified PVA-based electrically controlled solid propellant [D]. Changsha: National University of Defense Technology, 2021: 26-56 (in Chinese). | |
96 | LI Y, XIA Z X, MA L K, et al. Study on the thermal decomposition behavior and products of poly(vinyl alcohol) and its LiClO4 composites via Py/GC/MS[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(12): 7031-7042. |
97 | AGGARWAL R, PATEL I, THIRUMALVALAVAN. A study on electrically controlled solid propellants[J]. International Journal of Engineering Sciences & Research Technology, 2015,4(10): 557-561. |
98 | SAWKA W N, MCPHERSON M. Electrical solid propellants: A safe, micro to macro propulsion technology[C]∥ Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2013. |
99 | 胡建新, 段炼, 何志成, 等. 一种推力可控的多脉冲固体火箭发动机: CN108488005A[P]. 2020-02-07. |
HU J X, DUAN L, HE Z C, et al. A thrust-controlled multi-pulse solid rocket engine: CN108488005A[P]. 2020-02-07 (in Chinese). | |
100 | ANDREW N, TED F, IVAN G, et al. SpinSat mission overview[C]∥27th Annual AIAA/USU Conference on Small Satellites. Logan: Utah State University, 2013. |
101 | GLASCOCK M S, ROVEY J, WILLIAMS S, et al. Plasma plume characterization of electric solid propellant micro pulsed plasma thrusters[C]∥Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2015. |
102 | GLASCOCK M S, ROVEY J, WILLIAMS S, et al. Observation of late-time ablation in electric solid propellant pulsed microthrusters[C]∥Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016. |
103 | GLASCOCK M S, ROVEY J. Electric solid propellant ablation in a pulsed electric thruster[C]∥Proceedings of the 2018 Joint Propulsion Conference. Reston: AIAA, 2018. |
104 | GLASCOCK M S, ROVEY J L, POLZIN K A. Impulse and performance measurements of electric solid propellant in a laboratory electrothermal ablation-fed pulsed plasma thruster[J]. Aerospace, 2020, 7(6): 70. |
105 | GLASCOCK M S, DREW P D, ROVEY J L, et al. Thermodynamic properties of hydroxylammonium nitrate-based electric solid propellant plasma[J]. Journal of Thermophysics and Heat Transfer, 2020, 34(3): 522-529. |
106 | GLASCOCK M S, ROVEY J L, POLZIN K A. Electric solid propellant ablation in an arc discharge[J]. Journal of Propulsion and Power, 2019, 35(5): 984-993. |
107 | GLASCOCK M S, ROVEY J L, WILLIAMS S, et al. Plume characterization of electric solid propellant pulsed micro-thrusters[J]. Journal of Propulsion and Power, 2017, 33(4): 870-880. |
108 | GLASCOCK M S. Characterization of a green electric solid propellant for electric propulsion[D]. Rolla: Missouri University of Science and Technology, 2019: 30-40. |
109 | ROVEY J L, LYNE C T, MUNDAHL A J, et al. Review of multimode space propulsion[J]. Progress in Aerospace Sciences, 2020, 118: 100627. |
110 | ROVEY J, LYNE C T, MUNDAHL A J, et al. Review of chemical-electric multimode space propulsion[C]∥ Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019. |
111 | KOEHLER F B, LANGHENRY M, SUMMERS M, et al. Electric propellant solid rocket motor thruster results enabling small satellites[C]∥Small Satellite Conference, 2017. |
112 | KOEHLER F, MEISNER M, VOLLIN J. Multi-pulse solid rocket motor technology[C]∥Proceedings of the AIAA Propulsion and Energy 2020 Forum. Reston: AIAA, 2020. |
[1] | Ge WANG, Zhibang WANG, Fuqi WANG, Ben GUAN, Limin WANG, Haoran NING. Numerical study on quasi⁃one⁃dimensional internal ballistics of throttling segregated fuel⁃oxidizer systems [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 129111-129111. |
[2] | Ruyao WANG, Anchen SONG, Limin WANG, Deyou WANG, Junwei LI, Ningfei WANG. Plume velocity characteristics of pintle controlled solid rocket motor based on TDLAS technique [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 128107-128107. |
[3] | Hongjin LI, Junwei LI, Kan XIE, Xiang LI, Zheng YANG, Ningfei WANG. Effect of two-phase flow on performance of plug nozzle in solid rocket motor [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 127890-127890. |
[4] | LI Yingkun, HAN Junli, CHEN Xiong, ZHOU Changsheng, GONG Lunkun. Numerical simulation of the ignition transient of dual pulse motor based on multi-physics coupling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(4): 120409-120409. |
[5] | YU Jiaquan, XU Jinsheng, CHEN Xiong, ZHOU Changsheng, JIA Deng, LI Hongwen. Rate-dependent property of propellant and inhibitor interface debonding [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(12): 3861-3867. |
[6] | Xiong Wenbo;Liu Yu;Ren Junxue;Zhang Xiaoguang. Generalized Burning Surface Calculation of Three Dimensional Propellant Based on Element Method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(7): 1176-1180. |
[7] | Wang Songbai. DISTRIBUTION OF THE PARTICLE DIAMETERS IN THE JET EXHAUST OF SOLID ROCKET MOTOR [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1990, 11(12): 606-609. |
[8] | Wang Jiayun;Zhan Zhangpeng and Qu Ziqiang . THE INTEGRATED DESIGN OF MISSILE WITH SOLID ROCKET -RAMJET COMBINATION [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1988, 9(2): 25-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341