[1] VISKANTA R. Heat transfer to impinging isothermal gas and flame jets[J]. Experimental Thermal and Fluid Science, 1993, 6(2):111-134. [2] BUNKER R S. Gas turbine heat transfer:Ten remaining hot gas path challenges[J]. ASME Journal of Turbomachinery, 2007, 129:193-210. [3] FREGEAU M, GABR M, PARASCHIVOIU I, et al. Simulation of heat transfer from hot-air jets impinging a three-dimensional concave surface[J]. Journal of Aircraft, 2009, 46:721-725. [4] WEIGAND B, SPRING S. Multiple jet impingement-A review[J]. Heat Transfer Research, 2011, 42:101-142. [5] CARLOMAGNO G M, IANIRO A. Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance:A review[J]. Experimental Thermal and Fluid Science, 2014, 58:15-35. [6] COLUCCI D W, VISKANTA R. Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet[J]. Experimental Thermal and Fluid Science, 1996, 13:71-80. [7] BRIGNONI L A, GARIMELLA S V. Effects of nozzle-inlet chamfering on pressure drop and heat transfer in confined air jet impingement[J]. International Journal of Heat and Mass Transfer, 2000, 43:1133-1139. [8] LEE J H, LEE S J. The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement[J]. International Journal of Heat and Mass Transfer, 2000, 43:3497-3509. [9] GAO N, SUN H, EWING D. Heat transfer to impinging round jets with triangular tabs[J]. International Journal of Heat and Mass Transfer, 2003, 46:2557-2569. [10] YU Y Z, ZHANG J Z, XU H S. Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs[J]. International Journal of Heat and Mass Transfer, 2014, 72:222-233. [11] YU Y Z, ZHANG J Z, SHAN Y. Convective heat transfer of a row of air jets impingement excited by triangular tabs in a confined crossflow channel[J]. International Journal of Heat and Mass Transfer, 2015, 80:126-138. [12] ZAMAN K B M Q, BRIDGES J E, HUFF D L. Evolution from ‘tabs’ to ‘chevron technology’-A review[J]. International Journal of Aeroacoustics, 2011, 10:685-710. [13] KONG F S, JIN Y Z, SETOGUCHI T. Numerical analysis of chevron nozzle effects on performance of the supersonic ejector-diffuser system[J]. Journal of Thermal Science, 2013, 22:459-466. [14] 单勇, 张靖周, 邵万仁, 等. 冠状喷口抑制涡扇发动机喷流噪声试验和数值研究[J]. 航空学报, 2013, 34(5):1046-1056. SHAN Y, ZHANG J Z, SHAO W R. Experimental and numerical research on jet noise suppression with chevron nozzle for turbine engines[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1046-1056(in Chinese). [15] VIOLATO D, SCARANO F. Three-dimensional evolution of flow structures in transitional circular and chevron jets[J]. Physics of Fluids, 2011, 23(12):124104. [16] VIOLATO D, IANIRO A, CARDONE G, et al. Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets[J]. International Journal of Heat and Fluid Flow, 2012, 37:22-36. [17] GUAN T, ZHANG J, SHAN Y, et al. Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle-Part 1:Experimental analysis[J]. International Journal of Heat and Mass Transfer, 2017, 106:329-338. [18] GUAN T, ZHANG J, SHAN Y. Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle-Part 2:Numerical analysis[J]. International Journal of Heat and Mass Transfer, 2017, 106:339-355. [19] VINZE R, CHANDEL S, LIMAYE M D, et al. Local heat transfer distribution between smooth flat surface and impinging incompressible air jet from a chevron nozzle[J]. Experimental Thermal and Fluid Science, 2016, 78:124-136. [20] 李鑫郡, 张靖周, 谭晓茗. 单个压电风扇传热特性研究[J]. 航空学报, 2017, 38(7):205-214. LI X J, ZHANG J Z, TAN X M. Characteristics of heat transfer with a single piezoelectric fan[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):205-214(in Chinese). |